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We present new methods for computing the motion of two-dimensional closed
interfaces in a slow viscous flow. The interfacial velocity is found through the solution
to an integral equation whose analytic formulation is based on complex-variable
theory for the biharmonic equation. The numerical methods for solving the integral
equations are spectrally accurate and employ a fast multipole-based iterative solution
procedure, which requires ony(N) operations wher#l is the number of nodes in
the discretization of the interface. The interface is described spectrally, and we use
evolution equations that preserve equal spacing in arclength of the marker points. A
small-scale decomposition is performed to extract the dominant term in the evolution
of the interface, and we show that this dominant term leads to a CFL-type stability
constraint. When in an equal arclength frame, this term is linear and we show that
implicit time-integration schemes that are explicitin Fourier space can be formulated.
We verify this analysis through several numerical examples 2001 Academic Press

Key Words:Stokes flow; fluid interfaces; integral equations; fast-multipole meth-
ods; small-scale decomposition.

1. INTRODUCTION

Numerical simulation has become one of the most important tools for investigating
terfacial motion; however, computationally tracking fluid interfaces is a very expensi
process. The reasons for this are clear: the governing fluid equations must be solved re
edly in domains with highly complex boundaries and the dynamics of the interface
exhibit stiffness, particularly as regions of high curvature develop. Even with increas
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speed and memory, current computational architecture is still limited, when not coup
with modern fast algorithms, in its ability to handle large-scale fluid interface problen
with a high degree of accuracy.

In this paper, we present new methods for accurately and efficiently computing
motion of closed, two-dimensional fluid interfaces immersed in a Stokes flow. We al
present a mathematical analysis of this motion. Our algorithms will be most beneficial
large-scale problems consisting of a number of these interfaces; however, to presen
analysis and to fix our ideas, we study here the motion of a single, closed interface. The
elements of our methods are as follows. First, the governing fluid dynamics are descri
by an integral equation formulation which is solved using spectrally accurate, fast methc
Second, we use evolution equations that preserve equal arclength spacing of the m:
points on the interface, thereby eliminating the need to redistribute points. Third, in ort
to capitalize on the ability to solve the integral equations with a high-degree of accura
we use a spectral mesh for the interface. Finally, in order to gain insight into the dynarr
and to provide an analytic tool for understanding stability requirements, we perforn
small-scale decomposition to determine the most dominant term in the evolution of
interface.

We find solutions to the Stokes equations by extending the integral equation meth
developed in [13, 20] for solid particles to those which can handle the boundary conditic
associated with fluid interfaces. Our starting point is the classical Sherman—Laurice
equation which has its analytic foundation in the complex variable theory for the biharmol
equation. The discretization of the integral equation is spectrally accurate and the
multipole method [8, 12, 29] is used to compute the matrix—vector products in the iterat
solution of the resulting linear system. Withpoints in the discretization of the boundary,
our method requires onl@®(N) operations, versus standard implementations of iterativ
schemes [9, 27] which requit® (N?) operations or direct Gaussian elimination [34, 35]
which areO(N3). Given the number of times the Stokes equations must be solved duri
the course of a simulation, this significant reduction in operation count becomes impera
when considering large-scale problems. The consequence of the less efficient algorithr
clear: thus-far, only modest-sized examples have been considered: Charles and Pozri
study the rheology of suspensions of up to 25 bubbles in [9] and van de Vorst and Mattl
appear to use a maximum of 17 in their studies of viscous sintering in [35].

It has been observed [34, 35] that the evolution of interfaces in a Stokes flow appear
become stiff as curvature increases. However, there appears to have been no formal an
done to determine the source of this stiffness, and similarily, there does not seemto be &
orous understanding of what are the stability constraints of the motion. We employ the id
of Houet al. presented in [18] for removing the stiffness from Hele—Shaw flows and inerti
vortex sheet motion. Here, the authors performed a small-scale decomposition to detert
the dominant term in the evolution of the interface. This analysis has been applied to els
filaments in a Stokes flow in [31], but to this author’'s knowledge, not to fluid interface
We perform a small-scale decomposition and show that the dominant term is of first orc
leading to a CFL-type stability constraint. By dynamically maintaining a mesh in which tt
nodes are distributed at equal arclength intervals, the dominant term appears linearly, an
can formulate implicit time-stepping algorithms that are explicitin Fourier space. With su
a low-order stability constraint, it is questionable that large, stable step sizes will be of
when balanced against the need for accuracy, and we investigate this question numeri
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We see from the analysis of the interfacial dynamics that the motion of an interface i
Stokes flow is itself not intrinsically stiff, certainly not to the same degree as other examg
of interface motion such as elastic filaments or Hele-Shaw flow. We argue, however,
the motion of marker points on the interface can become stiff if they are allowed to cluste
small spatial scales in regions of high curvature, and we demonstrate this point numeric
with one particular mesh-refinement scheme. Since the cost of solving integral equat
for Stokes flow can be high, many authors [27, 34, 35] refine the mesh in regions of h
curvature in order to minimize the number of points needed for adequate resolution. -
resulting stiffness cause Van de Vorst and Mattheij to use backward-difference formu
to avoid the prohibitively small step sizes needed by explicit time-stepping schemes.
show both analytically and numerically that this stiffness is avoided by using a method t
maintains marker points at equal intervals in arclength.

In this work, the interface is described using a spectral mesh versus more typical
scriptions such as cubic splines or polygonal approximations. These low-order descript
limit the spatial accuracy in describing the interface, and when coupled with less effici
solutions to the integral equations, underresolved features on the interface may result.
use of spectral methods is not without their difficulties, however. We demonstrate the
straightforward calculation of the velocity via Fourier collocation leads to spurious grow
of modes near the Nyquist frequency. Similar instabilities described in [18] are belie
to be the result of aliasing errors and they are suppressed by filtering. Baker and Nacl
carefully analyze these instabilities in the context of vortex sheet motion in the presenc
surface tension in [5]. They show through a linear stability analysis of the discrete equati
that these instabilities arise from the velocity being inadequately resolved and show th
more careful discretization results in a stable method. We show numerically that by padc
the spectrum in all of the collocation calculations, we appear to get a stable method. A n
thorough stability analysis is needed in order to rigorously investigate the role of differe
spatial discretizations in these aliasing-type instabilities. We save this for future work.

We consider only two-dimensional problems here. While many physical effects are |
in this reduction of dimension, it has been seen that two-dimensional bubbles and dt
retain enough of the qualitative features seen in three dimensions to maintain a high
gree of physical relevance. There have been integral equation methods developed to
three-dimensional bubbles and drops in Stokes flow [23, 36], and clearly the increa
computational complexity makes designing efficient algorithms even more critical. T
complex variable methods presented here do not extend to three dimensions as prirr
variable formulations do; however, the computational tools and general methodology
available in three dimensions [14, 15].

We begin, in the next section, by outlining the governing equations for fluid interfac
in a Stokes flow. We focus our attention on two cases, the first in which a closed interf;
(a bubble or drop) sits in an infinite expanse of fluid and the second in which the interf:
bounds the fluid domain. In Section 3, we briefly review the relevant complex varial
theory for the biharmonic equation which leads to the formulation of the integral equatic
in Section 4. In Section 5, we discuss the dynamics of the interface. A small-scale dec
position of the interface is done to extract off the most dominant term in the motion, tt
giving us the nature of the stability constraints. We show that in the equal arclength fral
an implicit treatment of the dominant term is easily inverted by the Fourier transform.
Section 6 we present our numerical methods, and we give several examples in Sectior
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2. THE GOVERNING EQUATIONS

We consider the motion of a two-dimensional closed fluid interfaée a slow viscous
flow for two separate problems. In the first case (see FigI'liammersed in an unbounded
fluid domainD. Here,I" represents either the boundary of a bubble (inner viscosity is zer
or adrop. Inthe second case (Fig. 1b), the fluid domain is boundEdTyis latter problem
can be used as a model for the viscous sintering of glass (c.f. [34, 35]) or the coalesce
of liquid drops (c.f. [10]).

We assume that the Reynolds number is small, thus the equations governing the f
motion in D are given by the Stokes equations

uViu=Vp, V.u=0, xeD, (1)

whereu = (u, v, 0) is the velocity,p is pressure, ang is the fluid viscosity. Ifl" is the
boundary of a drop, then the Stokes equations must also hold ifiside

auveud =vpd, v.ud=0, 2)
wherei > 0 and the superscriptdenotes variables inside the drop. The boundary conditior
for an interface between two viscous fluids include continuity of velocity and a jump |
normal stress proportional to the curvature. This latter condition is specified by

—(p— pNsijn; +2u(aj — A& )n; = —okn;. 3)
Here,g; is the rate-of-strain tensor
o 1/0y n ou;
G = 2 3Xj 9%; ’
where the indicesand | take on the values 1 or 2 corresponding toxher y-directions,
respectivelyg is the surface tension, anrdis the local curvature of . If the fluid on one

a) b)

r

FIG. 1. A viscous fluid domairD with interfacerl™: (a) a bubble or drop in an infinite expanse of fluid, (b)
the fluid is bounded by with an inviscid exterior. The unit normal points out ofD and# is the tangent angle
to I'. The local curvature is given by = 65, wheres is arclength increasing in a clockwise direction in case (a)
and counter-clockwise in case (b).
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side ofT" is inviscid, then we do not require continuity of velocity, and the stress bounda
condition is obtained from (3) by setting' andx to be zero. IfD is unbounded, then extra
conditions are needed at infinity to complete the description of the problem. We have

U— Uxp(X, 1)+ A X as|x| - oo 4)
= 27 |x|2’ ’

whereu,, is the velocity of the incident flow and is the prescribed rate of change of the
fluid domainD (in most cases, this will be fixed at zero).

We nondimensionalize the above equations by introducing characteristic values for
locity, uc = o/u; the length of the region bounded by a; pressurep. = o/a; and time,
tc = au/o. The dimensionless form of the Stokes equations are

Vu=Vp, V.-u=0
AVl =vpd, v.ul=0,

and the stress interface condition becomes
—(p— PH3ijn; +2(&; — A )nj = kn;. (5)

The motion of the interface is given by the kinematic condition which states that mater
points on the interface move with the velocity of the fluid. Thus, the Lagrangian descripti
is

%—u(x) xerl
dt ' ’

Many approaches to tracking interface motion are based on the time integration of the al
(c.f. [27, 34, 35], for example). However, for long-time simulations where the interfa
changes shape significantly, the Lagrangian description may lead to either clusterin
inadequate resolution of marker points. The usual remedy is to postprocess these p
in a heuristic manner to ensure proper grid spacing on the interface. Instead, we use
observation given in Hoet al. [18] that the shape of an interface is determined solely b
its normal velocityd = u - n. Consequently, a tangential compon&ntan be introduced

without changing the shape of the interface, and we chooseTths give us desirable

properties in the interface dynamics [18]. The evolution equation of the interface, then,

d
d—f:Un-kTs, x eT. (6)

We will investigate in detail a choice foF that dynamically maintains equal arclength
spacing of the marker points, and we will see that this accomplishes two things. (It shc
be noted that others, for example [36], have added in tangential velocities as a wa
controlling mesh distortion.) First, it prevents prohibitively small time steps needed |
explicit methods when points cluster together. Second, it allows us to define efficient tir
stepping schemes that treat the stiffest term in (6) implicitly. This will be discussed in mc
detail in Section 5.
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3. THE BIHARMONIC EQUATION AND COMPLEX VARIABLE THEORY

For flow in two dimensions, the governing equations can be simplified by introducing
stream functionV(x, y) which satisfies the relations= Wy, v = —W,. In this way, the
Stokes equations are replaced by the biharmonic equatidf for

A’W(X) =

There is a complex variable theory for the biharmonic equation that has been exploitec
a number of authors (c.f. [1, 6, 16, 28, 33] for example) for deriving analytical solutions f
interfaces in creeping flows. This complex variable theory also provides the analytical to
for deriving the integral equations that are the basis for our numerical study. We summa
the relevant details here.

Following the discussion of Mikhlin and others [24—26], we note that any plane bihe
monic functionW(x, y) can be expressed by Goursat’s formula as

W(x, y) = Re&(zg(2) + x(2)),

wherep andy are analytic functions of the complex variable- x + iy, and Ré f ) denotes
the real part of the complex-valued functidn The functionsp (z) andy(z) = x'(2) are
known as Goursat functions. All of the physical variables can be expressed in terms of t
Goursat functions and they are listed here (c.f. [22]):

—v+iu=¢2+2¢'2) + V(2
p=—4Im@), p°=-4Im@@)
e tien=—ep+iey=—i(z¢"+v).

These expressions allow us to reduce the boundary-value problems associated witl
terfaces in a bounded or unbounded Stokes flow to problems in analytic function the
namely that of findingy and+ which satisfy appropriate conditions on the boundgry
We outline these conditions below.

The derivation of the stress-interface condition in terms of Goursat functions clost
follows that presented in [33] with slight changes in curve orientation and notation. Defi
n=ny+iny andf = f, +if,, wheref; = —pég;n; + 2g;n;, then

f =41Im(@")n — 2i (z¢” + ¥)n.

For a pointr on the boundary, the outward normal is given by= —i 75 (again, see Fig. 1
for orientation), which gives

f=-20¢ - ¢) +2(f¢”+1ﬂ)*

= —2— — ¢’ — ).
5@ T — V)
Substituting the above anth = —1ginto the interface condition (5) we get
{ lim (¢ — 28" — ) — & lim (¢—z$—z[)} N LU
as zZ—>1~ o 20982’
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wherett is slightly abovel (in a direction opposite tm), andz~ is slightly below.
Integrating the above with respectdgives

1ot

lim (¢ — 2" =) =2 im (9 —2¢' —y) = -5, Tel )

Here, the constant of integration may be fixed to be zero. If continuity of velocity is require
then

lim (@ + 267+ ) = im (¢ + 26 + ). ®)

If D is unbounded, then the Goursat functions must also capture the appropriate far-1
velocity (4) and contain an undetermined far-field pressure term [6, 33]

[ - A1l
¢~ —szpoo(t)z—i—q&oo(z) +G), ¥~ Y2 —GH) —i 5 as|z| - o0, (9)
T Z

wherepy(t) is determined as part of the solutida(t) is an arbitrary constant angl, (2)
andvy,(z) are suitably chosen analytic functions so that

000 (2) + 20.(2) + Yoo (2) = —i (Uso + 1 Vo).

4. THE SHERMAN-LAURICELLA INTEGRAL EQUATION

It is well known that two-dimensional Stokes flow and elasticity in the plane are close
related. Both can be expressed as biharmonic equations for a scalar potential functior
though the boundary conditions may differ. An extensive theory based on complex varial
has been developed for formulating integral equations for the biharmonic equation [19, |
26, 32]. In [13], we used the classical Sherman-Lauricella equation as a starting poir
formulate integral equation methods for solving a variety of boundary-value problems
Stokes flow with solid boundaries as well as isotropic elasticity in the plane. In this st
tion, we outline the corresponding integral equations associated with fluid interfaces i
Stokes flow. (We note here that the Sherman—Lauricella integral equations can be ma
be equivalent to the integral equations used in [9, 27, 34, 35], which are based on primi
variable formulations. This is discussed in detail in [13].)

We seek formulations faf (z) andys (z) that will be used to formulate integral equations
based on satisfing the stress interface condition (7). In addition, the Goursat functions |
be required to satisfy the velocity condition (8) and the far-field conditions (9). In Append
A, we discuss the equivalence between the second fundamental problem in plane elas
and the problem of a fluid interface bounding a viscous fluid (case b) in Fig. 1). Sin
representations for the Goursat functions for the former problem have been well stud
we use them for the latter, and in Section 4.1, we present the Sherman—Lauricella inte
equation that results. We then present the integral equation for interfaces in unbour
domains in Section 4.2.

4.1. Interfaces Bounding Fluid Domains

In Appendix A, we show that we can use the representations for the Goursat functi
suggested by Sherman [25, 26] for a fundamental boundary value problem for elasticit
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the plane. These representations are

1 w(&,t)
6@ =5 [ S5 e

(10)

V() =

1 /—w(s,t>ds+w<s,t>d§_ 1 [E0@b

2mi £E—7z 27i Jr (€ — 2)2
wherew (&, t) is an unknown complex density defined on the boundary of the domain
If we let z tend to a point onT" and use the classical formulae for the limiting values of
Cauchy-type integrals, we obtain from (7) (with= 0) the Sherman-Lauricella integral
equation:

1 f—t 1 [ £—1 _ B
w(r,t)—l—ﬁ/ra)(é,t)dlng_r_—i—ﬁ/r , E—T__IT_—Z
lort
=33 (11)

Note that the left-hand side of the integral equation includes the Ef,mc_— Z,), where
Z, is an arbitrarily prescribed point in the fluid domdand

w(&,t) wE D
—~_d&]|.
Fo = / Ls—zgz TE-zp®

This term is added to ensure the invertibility of (11). Letting r = re'?, a straightforward
calculation shows that

dIns — —idv, ds—— 2ie??dy.
3 3

—'L' 4

Thus, (11) can be written in the form

w(f,t)+i/w(g,t)dﬁ+ ! /w(g 1e?’dy — BO_ =—}8l. (12)
27 Jr b4

r—z* 20s

Assuming that the contours themselves are smooth, the latter form of the Sherm
Lauricella equation is clearly a Fredholm equation of the second kind with smooth ki
nel, and the Fredholm alternative applies. We refer the reader to [25] or [26] for a prc
that (11) is invertible and th&, = 0 so long as the boundary data satisfies a compatibilit
condition. In the problems considered here, this compatibility condition requires that

|m/8ldr=o
- 0s

which is clearly the case.
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4.2. Interfaces in Unbounded Domains

When the fluid domairD is unbounded, we must modify the representationgfand
Y to capture the far-field behaviour given by (9)

1 t i
$(2) = “;@ ) dé — 2 P07+ (D) + G()
1 [ —w@EDdt+oE DdE 1 [éeEl)
‘[’(Z)_ﬁ/r E-2 "o G2 ®
A1 —
—4Zi_k+WMa—Gm, (13)

wherez. is an arbitrary point inside the bubble or drop. The far-field presgurét) is
determined as part of the solution through the expression

2 (&, 1)
o) = —=R d
Poo (1) - e/r(é— )25

which fixes a reference value for the pressure.atJsing the formulae for jumps across
the interface of a Cauchy-type integral, we see that the velocity is continuous across
interface, thus (8) is satisfied automatically. Again, lettrapproach a boundary point
we obtain from (7)

MtU+——/w@Udm fi/w@¢m§12+wem—wé%aﬁ
27l Jr E—1 2

y 0T

= L B~ PO ~ T D), (14)

whereg = (1—-1)/(1+ 1),y =1/(1+ 1), andG is given by

Gay:%ﬁwgums

It has been noted by other authors [17] that integral equation formulations in primiti
variables can become singular in the limits=- 0 andh = oo (the drops become air bubbles
or solid particles, respectively). Deflated integral equations must be formulated in orde
compute solutions wheh is close to either of these two limits. In the integral equatior
formulation (14)» = Ois notasingular case. The numerical results in Example 4, Sectiol
support this, and again, we refer the reader to [25] or [26] for discussions on invertibilit

Wheni = 1, i.e., the drop viscosity is the same as the ambient fluid, the solution to (1
is trivial,

1ot
=———, for . 15
= T4%s e (15)

This explicit solution to (14) is a significant simplification, it has been noted by others [6,
10], and it will provide a convenient test case for our numerical methods for the evoluti
of the drop interface.
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5. DYNAMICS OF THE INTERFACE

In this section we discuss Eg. (6) for the evolution of the interfacAs discussed in
Section 2, the shape of the evolving interface is determined solely by the normal compor
of the fluid velocityU onT', whereU = Re{(u + iv)n} and

Utiv=—ilm@+2z§'+9y), tel

= 2?1 w (&, t){s—er—di} %a)(é t)d( )+uoo+|uoo
(16)

In the abovegw(t, t) is found from the solution to (11) or (14) arfddenotes a principal
value integral. (It is understood thaf, + i v,, = 0 for flows in bounded domains.) The role
of the tangential velocityl in (6) is to effect a change in the frame for the parametrizatiol
of I'. In Section 5.1, we derive an expression Tomhich dynamically maintains equal
arclength spacing of the marker points. This is called the Equal Arclength Frame. |
comparison, we give an expression fbrwhich dynamically clusters marker points in
the vicinity of regions of high curvature (called the Complexity Measuring Frame). |
Section 5.2, we apply a small-scale decomposition &fi v to extract the most dominant
term from the dynamics of the interface. By choosihgccording to the equal arclength
frame, this dominant, highest-order term appears linearly and its implicit time integrati
can be handled trivially by the Fourier transform.

5.1. Curve Motion

We introduce a parametrization Bfso that the interface is described by= x(«, t) +
iy(a,t), wherea € [0, 27]. (Note: As shown in Fig. 1, the parametrization traverBes
counter-clockwise ifl" boundsD, and clockwise ifD is unbounded.) The outward unit
normal onl" is

T, .
n=—i2=—iée".
S

Here,sis arclengths, = |7,|, andd is the tangent angle tB. We rewrite (6) as

9 Ui% T~ _Uie 4 Tl 17)
dt Sw Sw
Alternatively, we could usé ands, as the dynamic variables, which is the approach take
in [18, 31]. In these works, a small-scale decomposition on the equati@h $tiows the
highest-order term appearing linearlydnAs we will see in Section 5.2, a similar analysis
on (17) shows that the stiffest term can be made linear, ithus we retain the physical
coordinates as our dynamic variables. It is, however, illustrative to rewrite the evolution
terms of9 ands, as it will aid us in deriving an expression forthat will maintain an equal
arclength frame in the parametrization.

The following derivation is similar to that presented in Hewal. [18], and we include it
here for completeness and to incorporate our change in curve orientation. First, differe
atingz, = $,€? with respect td gives
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The derivative of (17) with respect tois

%“ — (Uby + T)E? + (0, T — Uy)ie.

Equating the right-hand sides of the above two equations gives the evolutignando:

1
St = U, + Ty, 6= g(eaT —Ugy). (18)

We will see in the following section that requirirgg to be everywhere equal to its mean
will result in the most dominant term appearing linearly in the evolution equation ai
will prevent prohibitive stability constraints for explicit time-stepping methods. This equ
arclength frame is enforced by a particular choic& ofVe require

1 = o1
Sula, t) = Z/o s, de’ = L, (19)

whereL (t) is the length of the interfacE. By differentiating (19) with respect tband
using (18),T is found to be

o 2
T(a,t) = T(O,1) —/ 0,U do’ + i/ 0y Udd'. (20)
0 2 Jo

If s, satisfies (19) initially, the above choice férmaintains this constraint in time.

Itis possible to define a tangential velocity that can be used to dynamically refine the m
at regions of high curvature. The Complexity Measuring Frame is achieved by ensuring
S (o, 1)C(k) is everywhere equal to its mean, whélé) is a strictly positive, smooth,
increasing function ofi| (C(x) = 1+ «2, for example). Thus, we wish to ensure

1 2
S (e, 1)C(k) = E/o S Ck (o)) do’

is maintained for all time and the choice Bfthat achieves this is

Cla:O 1 ¢ dC o dC ,
T(a,t) = c T(O,t)—a/O {dK( >a/+9arU (Kd/c_c>}da

U
Sy

o 2T (dC [ Uy dc
— - 9,U(k— —C ) bdo'. 21
T2 Jo {dx(sa)ﬁ (”dx >}“ @)

This frame was mentioned in Appendix 2 of [18] and we use it to explore the implicatio
on stability of allowing grid points to cluster in regions of high curvature.

5.2. Small-Scale Decomposition

It has been observed [34, 35] that the evolution of interfaces in a Stokes flow appea
become stiff as curvature increases. As argued in [18], the stability constraints arise fromn
influence of high-order terms only at small spatial scales. Below we present an asympt
analysis of the fluid velocity to determine the dominant term at small scales. We show 1
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if we are in the equal arclength frame, this dominant term appears linearly in the evolut
equation and can be treated implicitly in a straighforward manner.

Recall from the discussion in Section 4.1 that we can rewrite the kernel in the secc
principal-value integral in (16),

—7{@(5 t)d( - T) j{w(ﬂ t)e?? dy.

The fluid velocity onl™ then becomes

E—1

The second integral term on the right-hand side of the above equation contains a sm
kernel and thus is a smoothing operadton ». We use the notatiori ~ g introduced in
[18] to mean that the difference betweérandg is smoother tharf andg. Thus,

. 1 ’ %‘a’ g(x/ /
u+iv —Z}éw((x,t){g_r—%g_r_}da. (22)

u—l—lv———j{w(é t){ d ds_}+i—j{w(z9,t)e2i”dz9+uoo+ivoo.
& — T Jr

The Cauchy kernels in (22) can be rewritten as

s 1 o —a 1 o —a £y
E(, 1) — (o, 1) ZCOt( 2 >+{_2C0t( 2 >+E(a’,t)—r(oc,t)]’ (23)

where the bracketed term has a removable singularity provided iha smooth function
of « and the interface does not self intersect. Therefore, (22) can be rewritten as

: 1 , o —a ,
U+iv~—— ¢ w(a,t)cot da
2 r

= Hlw](a, 1),
whereH is the Hilbert transform [7], which is diagonalizable by the Fourier transform

H[E™] = —isgnn)e™, H[1] = 0.

Sincew is the solution to a Fredholm integral equation of the second kind with smoo
kernel, we can use the results in Appendix 1 of [18] directly to obtain an explicit expressi
for w at small scales. The dominant termwft small scales is given by the highest-order
term on the right-hand side of the integral equations (11) or (14),

Denote the small-scale velocity o + i v where

U +ivs=—2H [T—a}
2 s

2E is a smoothing operator am if its Fourier transform satisfieg[w] = O(e "), p > 0 for large wave
number|k|. Herep defines the strip of analyticity given Bima| < p.
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This, then, is the most dominant term in the velocity on the interface. (We have assur
in the scaling of the variables, that surface tension is nonzero. In the case of zero sur
tension, the highest-order term on the right-hand side of the integral equation is found fi
the ambient flow velocity. The small-scale velocity, then, would be the Hilbert transform
this term.)

If we have choseil according to (20), theg, is spatially invariant at fixed time and

Wit =2

1
2 gH [Tot] .

By extracting off the dominant behavior at small scales, the evolution equation (17) becot

dT Y 1 . Ty Ta

= T H[g]—iU —US T-TS 24

gt = 2sm Ll i e ¢ 'S ® 24)
__r 1

whereU?® andT?* are the normal and tangential components®f- i v°, respectively, and
R is given by the remaining terms on the right-hand side of (24), not including the fir
term. Applying a Fourier transform to (25) gives

Cn=Lp D

I 6 + R(n, 1). (26)

Thus, a time-integration method that treats the dominant term implicitly can be trivia
inverted by the Fourier Transform. We anticipate from (26) that i§ represented by a
truncated Fourier series, a stable step size for an explicit method will(t¢N) where
N/2 is the Nyquist frequency. Thus, the stability criteria is on the same order as a C
constraint and we will verify this numerically. From this analysis, we can also specul:
that allowing marker points to cluster, wherefybecomes very small in some regions, will
have an adverse effect on stability. The stability constraints for the fluid interface proble
in [18, 31] are of a much higher order and being able to efficiently treat the dominant te
implicitly has a clear advantage. In this case, it is questionable whether being able to
large stable step sizes will balance against the need for accuracy. We will investigate
guestion numerically in Section 7.

6. NUMERICAL METHODS

6.1. Spectral Description of the Interface and Time Integration Schemes

We obtain an initial equal arclength distribution of marker pointsl'ohy the meth-
ods outlined in [18]. We assume we are gividneven points orl” in some convenient
parametrization, wher#l is large enough to fully resolve the interface (i.e., the Fourie
spectrum has decayed to round-off). The initialization procedure involves solving a
guence of nonlinear equations for themarker points at equal arclength intervals using
Newton’s method and Fourier interpolation. Theris uniformly discretized i, where
h = 27 /N is the mesh spacing.

We use two different time-discretizations schemes to evelwet). The first applies
the explicit midpoint Runge—Kutta method to (17) directly. This explicit, second-ordk
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method is a standard approach and details can be found in [3]. Alternatively, we use
implicit-explicit method on (26). A wide variety of implicit-explicit (IMEX) multistep
methods are examined in detail in [2] and from this work, we select the SBDF (ser
implicit backward differentiation formula) scheme. The SBDF scheme is also second-or
and was selected over other second-order IMEX schemes because it appears, after
numerical experimentation, to have better stability properties for the problems conside
here. LetAt be the time step size andl denote the approximate solutiontat kAt. Then
the SBDF scheme applied to (26) gives

1 .Ek+1

AT +2RK — RKL, (27)

[ L —%|n|

n
k+1
S

The differential arclength is updated explicitly according to (18) using the second-orc
Adams—Bashforth method,

At
ST=S S GME M

whereM is given by

1 21

M=_—
2]T0

6,U da.

Multistep IMEX schemes are a more natural choice for (26) sgfté must be updated
first. We note here that IMEX Runge—Kutta schemes have been developed [4]. These w
have the advantage of being self-starting and possibly have higher accuracy.

The right-hand side of evolution equations (17) and (26) is calculated spectrally: /
differentiation in« is done using the fast Fourier transform, and a spectrally accurate d
cretization of (16) is discussed in the following section. In a straightforward pseudospec
calculation, we compute the velocity at tiespatial nodes; however, we see growth of
modes near the Nyquist frequency, particularly if the initial profile is significantly deforme
Similar instabilities described in [18] are believed to be the result of aliasing errors, and tf
are suppressed using a high-order Krasny filter. In [5], Baker and Nachbin carefuly anal
these instabilities in the context of vortex sheet motion in the presence of surface tens
They show through a linear stability analysis of the discrete equations that these insta
ties arise from the velocity being inadequately resolved and show that a spectrally-accu
“midpoint” discretization of the velocity results in a stable method. The approach we ta
is to calculate the velocity at twice the number of nodes in physical space and then trun
the spectrum to the original size. This, effectively, pads the spectrum in all of the spec
calculations, and we demonstrate numerically in Section 7 that this appears to give
stable method. Itis possible that this padding procedure plays an analogous role to the
point discretization in [5]. However, a more thorough stability analysis is needed in orc
to investigate the role of different spatial discretizations in these aliasing-type instabiliti
This is future work.

The Fourier spectrum is checked during the course of simulation and if the modes n
the Nyquist frequency rise above round dff,is doubled. If an explicit method is being
used, we select a new stable step size and according to (26) this should be

1Sk+1
AR — > ‘;—kmk.

o
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Similarly, if the evolving shape is becoming less complxs halved once sufficient modes
have decayed to round off and a new time step is determined by
gkt
At = 27 ALK,
S

o

6.2. Discretization of the Integral Equation

In order to solve the Sherman-Lauricella equations, we use adWysiiScretization
based on the trapezoidal rule since it achieves super-algebraic convergence for smoott
on smooth boundaries. For this, we assume that we are §l¥@oints on the contour,
equispaced with respect to the parametefhe step length in the discretization is defined
by h =27 /N’. Here,N’ = 2N whereN is the number of marker points dhand Fourier
interpolation is used to get data at twice the number of nodes. Associated with each ¢
point, denoted by;, is an unknown value;. The derivativer, will be denoted by and
the derivative values; at the discretization points are calculated via FFTs.

Consider now the system (11). After discretization, we have

N’ N’ o
wj +ZK1(fjsTi)wi +ZK2(IJ,Ti)aTi= L (28)

i—1 i—1 2loj]

The kernelK; andK are given by

h Oj Oj
Ki(t: . 7)) = —
(%), @) 27'[i<7,'i—1'j ‘l,'i—‘L'j)

. _ h oj _Fi(fi_fj)
KZ(T], T|) = 27 <7.'|—'L'] (?I_ﬁ)z > .

Whenrt; = 7;, K1 andK; should be replaced by the appropriate limits

h
K1(Tj,Tj)=ZKj|Gj|

h
Ka(tj. 7)) = 5 —kj(0))?/l0j].

wherex; denotes the curvature at the poifit calculated spectrally.

Remark. We have omitted the terrBy in (11) since its absence does not affect the
behavior of the iterative solution procedure we will employ. For a detailed discussion
this point, see [11].

The discretization of the Sherman—Lauricella equation (14) for bubbles or drops in
unbounded domain is

N’

o) + ﬁz Ki(zj, )i + B Z Ka(zj. w)ar + h Y wiloi]

i=1 i=1 i=1
; h-gNiR( il )—- (29)
ﬂznrj =1 (i — 2)? =9

where

g = — %ﬁ B(Doo(t)) — 794 (7)) — Yoo (T))).



494 M. C. A. KROPINSKI

In our implementation, the linear equations (28) and (29) are solved iteratively, using
generalized minimum residual method GMRES [30]. As discussed in detail in [13], the b
of the work at each iteration lies in applying the full matrix to a vector, i.e., computing tt
product represented by the left-hand side of (28) and (29). This product can be compt
in O(N) time using the adaptive fast multipole method (FMM). The implementation use
here was developed in [13] for problems in Stokes flow with solid boundaries and elastic
in the plane. For further details, we also refer the reader to the original papers [8, 12, :
Since the number of iterations needed to solve a Fredholm equation of the second kind
fixed precision is bounded independent of the systemidiage can estimate the total cost

by
c(e) C(e)N,

wherec(e) is the number of GMRES iterations needed to reduce the residual eerrani
C(e) is the constant of proportionality in the FMM.

Once the solutiorw; has been computed, we calculate the velocity at the grid poin
through discretizing (16),

_ h N & _
uj +1vj = —;(wa)j + Z Ki(l—j1 T)wi +1 Z KZ(Tja 7)on + (Uo +|Uoo)jv (30)

i=1 i=1

whereKj is defined previously anH{; is

Kz, m) = — (0 &
Ti,Tj) = —
15 A 2r\t -1 T —T]

Ki(rj,rj) = —% Re{@}.

0j

This quadrature rule is spectrally accurate and is based on subtracting off the singt
ity [5]. Again, FMM is used to evaluate (30). We note that in the primitive variable for
mulation, the integral equation is formulated in terms of the velocity, and thus an ex
evaluation is not required after the integral equation has been solved. The evaluatio
(30) in our formulation is equivalent to one extra GMRES iteration and is not a significa
cost.

7. NUMERICAL RESULTS

The algorithms described above have been implemented in Fortran. Here, we illust
their performance on a variety of examples. The convergence tolerance for the GMF
iteration is set to 10'° and all timings cited are for a Compag Alpha ES40.

ExXAMPLE 1: NUMERICAL STABILITY. As discussed in Section 6.1, a pseudospectre
calculation of the velocity (30) wittl” = N leads to spurious growth of the modes near the
Nyquist frequency (see Fig. 2). This spurious behavior does not appear when the spectrt
padded (the velocity is evaluated first at twice the number of marker pdints: 2N) and
the Fourier series for the right-hand side of (17) or (26) is truncated to the original numi
of modes). We save, for future consideration, a more rigorous linear stability analysis
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300

FIG. 2. The Fourier transforms lod,| of the evolution of an elliptical drop\(= 1) with aspect ratio A2 at
times 0:(0.2):1, in a nonpadded simulation.

the discrete system to identify the source of this instability and the role played by differe
spatial discretizations of the velocity. By computing the eigenvalues of the Jacobian ma
corresponding to the right-hand side of (17), we demonstrate numerically that the unpac
computations appear to be unstable, while the padded ones seem stable.

We consider a deformed elliptical drop and compute numerically the Jacobian matri>
this initial state. The plots of the eigenvalues are shown in Fig. 3NAscreases, linear
growth of positive, real eigenvalues can be seen in the unpadded computations. These
have been truncated, we do not show the largest negative eigenvalues, but the magnitu
the eigenvalues increase linearlylh thus confirming our expectation that a stable time
step size will beO(1/N).

We discussed briefly in Section 5.1 an alternative frame of reference for the parametr
tion, the complexity measuring frame. This frame adaptively clusters marker points
regions of high curvature, the advantage being that fewer modes will be required to fi
resolve the interface. Unfortunately, this has an adverse effect on the stability requirem
as we see again, by computing the eigenvalues of the Jacobian matrix. Figure 4 shows
of the full spectrum for the Jacobian matrix. Note that the largest negative eigenvalues
decreasing at such a rate as to suggest a stable time-step §&/d?). Note also that
there is a large gap in the magnitude of the eigenvalues with negative real parts, thus
system is exhibiting stiffness. It may be argued that this stiffness is simply the result of t
particular frame, but we know that a large disparity in the magnitude of the eigenvalues\
also witnessed in [34]. Here, marker points are updated using a Lagrangian approach
are postprocessed based on equidistributing the curvature of the interface.
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FIG.3. Theinstantaneous eigenvalues of the Jacobian matrix of an ellipticabdesfd | with aspectratio /6.

EXAMPLE 2: A RELAXING DROPWITHA = 1. Inthis example, we consider the evolution
of a deformed viscous drop toward a circular steady state. Here, the viscosity of the dro
the same as that of the ambient fluid, thus the solution to the integral equation is trivial.
use this example to numerically verify that the small-scale decomposition in Section '
accurately describes the nature of the stability constraint on the interface and to comj
the performance of the IMEX scheme versus Runge—Kutta.

We consider elliptical profiles with varying aspect ratios, normalized so that their ar
is . Figure 5 shows the evolution of a drop with initial aspect ratio gf2L In Fig. 6,
we show plots of the Fourier transform for both IMEX and Runge—Kutta at two differel
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FIG. 4. The instantaneous eigenvalues of the Jacobian matrix of an elliptical drepl] with aspect ratio
4/5. Complexity Measuring Frame witB(k) = 1+ «2.

time steps. The Runge—Kutta method is unstabletat: 0.05, while the IMEX scheme is
clearly stable. Computational information from using the Runge—Kutta method is sho
in Table I. Here, Error Q) is the relative error in the cross-sectional area and Erpef
(max|z,| — min|z,|)/ max|z,|). We can see from this table that the stable step size vari
with 1/N, as predicted by the analysis in Section 5.2. For comparison, we show compt
tional data for the IMEX scheme in Table Il for the evolution of the drop with initial aspec
ratio of 1/12. From this table, we can see that we are able to take very large stable step <
using the IMEX scheme, but at a significant loss of accuracy.

1.5F b

0.5 -

—1r -

-3 -2 -1 0 1 2 3

FIG.5. The evolution of an elliptical viscous drop & 1) toward a circular steady statd; = 8192 and the
initial aspect ratio is 112.
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. IMEX dt = 0.1 . IMEX dt = 0.05
10 10
10°° 107
107" 10"
107"® 107"®
107 10720
0 50 100 150 0 50 100 150
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FIG. 6. The Fourier transforms lgg,| of the evolution of the ellipse with aspect ratigat 5 instances in
time, for IMEX and Runge—Kutta at two time step$ = 0.1 andAt = 0.05.

Since fourth-order IMEX schemes require only an increase in computer memory, |
CPU, we experimented with the fourth-order IMEX scheme discussed in [2] in hop
of achieving higher accuracy. Unfortunately, this scheme appears to have a stability
guirement similar to the Runge—Kutta method and still does not achieve the same leve
accuracy. Thus, we use the Runge—Kutta method for the remaining examples.

ExamMPLE 3: DROPBREAKUP. We now consider the deformation of a drop withk= 1
placed in an extensional flow,

Uy =CX, Vs = —CY,
TABLE |

Computational Information for the Evolution of Elliptical Drops toward Steady
State Using Runge—Kutta

Aspect Ratio N At ty Error (A) Error (s,)
2/3 256 0.05 4.0 B376x 1078 1.3097x 1077
1/3 512 0.025 4.75 2112x 10°° 2.0251x 1077
1/6 2048 0.00625 6.275 .0313x 107 7.3435x 1077
1/12 8192 0.0015625 8.65625 .7302x 10712 1.6695x 1077

Note.At is the largest stable step size @nds the approximate time to steady-state.
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TABLE Il
IMEX Method for the Evolution of a Drop with
Initial Aspect Ratio of 1/12

At Error (A) Error (s,)
0.1 12249x 1073 3.5133x 10!
0.05 31073x 10 1.2185x 10!
0.025 78291x 10°° 3.7225x 1072
0.0015625 3840x 1077 1.8312x 10*

whereC is the dimensionless capillary number defined by

_ypa
.

C

In the numerical study [6], Buckmaster and Flaherty computed steady-state drop shape
various values of. They demonstrated that for values of the param@ter 47C+/A less
than 4.1, drops in an extensional flow will deform to a steady-state. They were unable
compute steady-state solutions beyond this parameter value and argued that this maxi
coincides with the onset of bursting.

Aninitially circular drop is placed in an extensional flow with= 0.2 which corresponds
to @ = 4.4547. The deformation of this drop until= 50 is shown in Fig. 7, and the
drop’s shape at = 60 is shown in Fig. 8. The CPU time required for this simulation wa

FIG. 7. Deformation of a dropX = 1) in an extensional flow witld = 0.2. This plot shows the evolution
fromt = 0 tot = 50. Error (A) = 6.545x 1077, Error (5,) = 2.6833x10°°.
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FIG. 8. The profile of a drop at = 60. A close up of the left tip is shown in the plot on the right. Error
(A) = 8.017x 10°%, Error (5,) = 1.404 x 10°°. The minimum width of the neck is 0.016.

8884 seconds. Clearly, the drop profile is not tending toward a steady-state, confirm
the prediction in [6]. Further calculations past pinch-off is the subject of future inves
gation.

EXAMPLE 4: THE INITIAL COALESCENCE OFTWO EQUAL CIRCLES.  In this example, we
consider a problem for which there exists both an analytic solution and previous numer
results. We examine a model for the coalescence of two cylindrical drops of fluid just af
touching. This is an example for which the fluid domain is boundet.byhe evolution of
two coalescing cylinders with initial radius- R, 0) and(R, 0) is described parametrically
by [16, 35]

(1—1v?)(1-v)Ry2cosa’

X', v) =
@.v) (1—2vcos2 + v2)4/1+ 12
) (1—1v?)(1+ v)RV2sina’
y(a',v) =

C (1—2vcos 2 + v2)/I+ 12

wherev specifies the degree of coalescence. This parameter has a value of 1 atinitial con
decreases to a value of zerotas> oo and evolves according to

dv 7R
— A/ 2 2
ai = ﬁv 14+ v2K (v9), (32)

whereK is the complete elliptic integral of the first kind defined by

/2
K(m):/ (1 - msirt¢) Y2 dg¢.
0

In this example, the line of contact is tlgeaxis and the point on the boundary at the line of
contact is refered to as timeck The curvature* at the neck is given by

. (1—6v+v)V1+12
K* = — )
(1-v)3RV2
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FIG. 9. The left plot shows the initial profile, the curvature at the neck has a value of 700. The right pl
shows the early stages of coalescence in the neck régiof:(0.004):0.02.

To compare with previously reported numerical results [34, 35], we start with the prof
shortly after touching, with a curvature value of 700 at the neck. Figure 9 shows b
the initial profile and a blow up of the neck region in the initial stages of coalescence.
large number of points is needed to spectrally resolve the interfhee, 32768, and the
time step size igAt = 0.0002. Figure 10 shows both the evolution of the neck curvatur
and the error in the computed solution. (The exact curvature was found by integrating (
using a high-order Runge—Kutta package with the error tolerancess0td2.) The CPU
time needed up to the final time of 0.02 was 25 hours.

The method described in [34, 35] uses a polygonal approximation to the interface,
finement of the mesh in the contact region, and Gaussian elimination for the solution to
integral equation (thus a®@(N?®) method). They find their simulations to be stiff and thus
employ backward-difference formulae (BDF), with the required Jacobian evaluations,
the implicit treatment of the evolution equations. For this problem, they have appeare
use only 200 points to describe the interface. The effect of this underresolution is clear;

~4

x 10

700 16
1.4

650
1.2
, 600 s 1

(3]

g 208
550 Tos
0.4

500
0.2
450 0

0 0005 001 0015 002 0 0005 001 0015 002

t t

FIG. 10. The left plot shows the evolution af* and the right plot shows the error in the computed solution
versus the analytical solution.
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error in the computed curvature is nearly 40% during this initial stage. It is interesting
note that our stable explicit time step size is only five times smaller than that used by
BDF scheme.

This example provides an indication of the ability of our methods to handle large-sci
problems. Because of the linear scaling of the computational costs of our methods,
could, in approximately the same CPU time, run a simulation of 128 moderately deforn
bubbles or drops witiN = 256 on each for about 10,000 times steps. This would we
surpass the larger simulations seen in previously reported works.

EXAMPLE 5: A CONTRACTING BUBBLE IN A QUIESCENT FLOw. In [33], Tanveer and
Vasconcelos exploit the complex variable theory for the biharmonic equation to der
analytical solutions for a large class of time-evolving bubbles in a two-dimensional Stok
flow. We use one of their solutions here for comparison.

We consider a bubble placed in a quiescent flow undergoing a contractioA zate.
The bubble shape is described initially by

z(o/, 0) = a(0)e' + by (0)ENY, o €0, 27], (32)

where a(0), by (0) > 0. The bubble is symmetrical with respect to tkexis and has
(N + 1)-fold symmetry. As argued in [33], the bubble will evolve according to

z(a/, 1) = at)e™'® + by (t)eNY,

where the evolution ad(t), by (t) and the bubble areA(t) are found through

%(abN) = —(N + Dabnlo(a, bn),
(33)
At) = m[a®(t) — NbBR ()] = A0) + mt.

Here,

i /ﬂ da/
2 Jo {a?+ N2b} — 2Naby cosa)}

1 »p { 4p }
= K ,
mlalp+1 |[(A+p)?

wherep = a/N by, andK is the complete elliptic integral of the first kind. (Note: The above
corrects an error in [33] for the evaluationlgfin terms ofK .) See Fig. 11 for the collapse
of an initial shape with four-fold symmetry and Table Ill for computational details. Towar
the end of the simulation, the bubble forms near-cusps on the interface, and according t«
analysis in [33], the bubble will continue to collapse in a sequence of geometrically simi
shapes until all of the air has been removed.
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FIG. 11. The evolution of a collapsing four-fold symmetric bubble. The initial shape is givea{®y= 0.9,
b3(0) = .1, A(0) = 0.787 and the contraction rate im = —2x. The final, inner, shape at= 0.356 hasA =
0.2136 andc* = 469.

The coefficientsa(t) andby (t) are found by integrating the initial-value problem (33)
directly, using a high-order Runge—Kutta package with small error tolerances {@t°).
From this solution, we compute the maximum curvatiten the interface from

et = 2O +buON?
T @) - by ON)?

We compare the accuracy of our methods against this maximum curvature. The result:
shown in Fig. 12.

Finally, we compute the evolution of collapsing drops of varying viscosity ratios ul
dergoing the same contraction rate as the above example. We attempted to simulate t
same final time& = 0.356, although some drops exhibit cusp-formation before that tinr

TABLE IlI
Computational Data for the Collapsing Bubble Problem

At° Errorin A Errorin|z,| CPU seconds
0.005 12495x 10°© 9.1179x 10°® 3.636x 10°
0.0025 15718x 10~/ 2.3802x 10°® 9.023x 10°
0.00125 19710x 10°8 6.0794x 1077 1.821x 10

Note. N= 512 onthe initial profile and doubles to a value\of= 8192.
AtO refers to the initial time step.



TABLE IV
Computational Data for Collapsing Drops of Varying Viscosity Ratio

A N;¢ t K} # GMRES lter/time step
0.1 2048 0.3560 79.1 6-10
0.5 32768 0.3540 225.84 5-11
5.0 32768 0.2967 552.29 5-14
10.0 32768 0.2873 898.92 6-17

Note. At° = 0.005 in all cases, andll; refers toN at the final time stepg} is the
maximum curvature at the final time step.

10
10°
T _
o =
g 8
= o
o o
3
10’ 10 — 0.005
- - 0.0025
107 - 0.00125
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0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

t

t

FIG. 12. The left plot shows the evolution af* and the right plot shows the error in the computed solution
versus the analytical solution for three different initial time steps. Note: the kinks in the error plots correspon

points whenN is doubled.
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FIG. 13. Collapsing drops of varying viscosity ratios.
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and the simulation terminates early. The profiles are shown in Fig. 13 and computatic
information is shown in Table IV.

8. CONCLUSIONS

In this paper, we present an analysis and new numerical methods for computing
motion of closed fluid interfaces in a Stokes flow. These methods have three impor
advantages. The first is that they are spectrally accurate. A spectral mesh is used fo
description of the interface, and the velocity at the marker points is calculated from
solution to an integral equation using a pseudospectral method. Second, the solution t
integral equation is fast, requiring on@®(N) operations, wherdl is the number of marker
points. This makes our methods highly amenable to large-scale simulations. Third, by u:
evolution equations that preserve equal arclength spacing of the marker points, a low-c
stability constraint is maintained. Extensions to multiply-connected domains with invisc
(A = 0) closed interfaces are considered in [21]. This work discusses the solution to inte:
equations similar to the one presented in Appendix A for elasticity problems in multipl
connected domains. Future work will involve developing methods for simulating a lar
numbers of drop interactions, including the breakup and coalescence phenonema.

APPENDIX: THE SECOND FUNDAMENTAL PROBLEM IN ELASTICITY

The representations fgrandy in Section 4.1 come directly from those given in [13] to
solve the second fundamental problem in elasticity. In this section, we outline this probl
and show its equivalence to the boundary-value problem for a fluid interface boundin
domain containing a viscous fluid. To demonstrate the potential for the above method
be extended to multiply-connected domains, we include the necessary modifications tc
representations for the Goursat functions. (Multiply-connected problems in elasticity in
plane and two-dimensional Stokes flow are discussed in detail in [13], and we refer
reader to this work.)

The second fundamental problem in plane elasticity is to find the state of equilibrium
a bounded elastic material when given external stresses are applied to its bdurtdarg,
we considel” to be(M + 1)-ply connected, with an outer boundary denoted'pand the
interior contours by'y, I',, ..., I'y. The boundary conditions for this problem in terms of
the appropriate Goursat functions are [13]

D)+ D (r) + V(1) = g1(7) +i02(7) + AKK), T eTlk (A1)

The left-hand side of (A.1) represents integrated components of stresgy anid), is
boundary data obtained from integrated components of applied forces acting ®he
termsA(k) are constants of integration wi(0) being arbitrarily set to zero.

As suggested by Sherman [25, 26] and outlined in [13], the representatichszpand
W (2) used to satisfy (A.1) are

1 p (&)
0@ = 5 [ £ de.

p<s>d<s+p<s>ds 1 Ep(€)
V(2) = Zn/ '/r(é—Z)zngrklZ

by
A.2
— (A.2)
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wherep (&) is the unknown complex densitg, are arbitrary points inside the component
curvesl'y, and theby are real constants defined by

bk=i/F p(&) dE — (&) de.

Letting z tend to a pointt on I", we obtain from (A.1) the Sherman-Lauricella integral
equation

1 £-
p+ 5 [p@dm Il [ @=Ly 20
L
#Y — Ak =g (A3)

whereg(t) = gu(t) + iga(t), A() = 0, and
AK) =—/ p(&)ds
Tk

Here,

_ 1 p&) o® =
BO_ZT[i/r|:(%_ dr + ——d& |,

- Z*)z (é - Z*)Z

andz, is an arbitrary point in the domaib. As discussed in [13], the addition of source
singularities inside each of the component curves completes the rank deficiency of
integral operator in the case of multiply-connected domains.

To establish the equivalence of the stress problem with the interface problem defil
by (7) for » = 0, identify ¢ with —i &, ¢ with —i W, and—ig with —(1/2)zs. Then (7)
clearly can be written in the form (A.1). Thus, we obtain the representations &rd
¥ in (10) and the integral equation (11) directly from (A.2) and (A.3) witk= —ip and
M = 0.
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