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We present new methods for computing the motion of two-dimensional closed
interfaces in a slow viscous flow. The interfacial velocity is found through the solution
to an integral equation whose analytic formulation is based on complex-variable
theory for the biharmonic equation. The numerical methods for solving the integral
equations are spectrally accurate and employ a fast multipole-based iterative solution
procedure, which requires onlyO(N) operations whereN is the number of nodes in
the discretization of the interface. The interface is described spectrally, and we use
evolution equations that preserve equal spacing in arclength of the marker points. A
small-scale decomposition is performed to extract the dominant term in the evolution
of the interface, and we show that this dominant term leads to a CFL-type stability
constraint. When in an equal arclength frame, this term is linear and we show that
implicit time-integration schemes that are explicit in Fourier space can be formulated.
We verify this analysis through several numerical examples.c© 2001 Academic Press
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1. INTRODUCTION

Numerical simulation has become one of the most important tools for investigating in-
terfacial motion; however, computationally tracking fluid interfaces is a very expensive
process. The reasons for this are clear: the governing fluid equations must be solved repeat-
edly in domains with highly complex boundaries and the dynamics of the interface may
exhibit stiffness, particularly as regions of high curvature develop. Even with increased
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speed and memory, current computational architecture is still limited, when not coupled
with modern fast algorithms, in its ability to handle large-scale fluid interface problems
with a high degree of accuracy.

In this paper, we present new methods for accurately and efficiently computing the
motion of closed, two-dimensional fluid interfaces immersed in a Stokes flow. We also
present a mathematical analysis of this motion. Our algorithms will be most beneficial for
large-scale problems consisting of a number of these interfaces; however, to present our
analysis and to fix our ideas, we study here the motion of a single, closed interface. The key
elements of our methods are as follows. First, the governing fluid dynamics are described
by an integral equation formulation which is solved using spectrally accurate, fast methods.
Second, we use evolution equations that preserve equal arclength spacing of the marker
points on the interface, thereby eliminating the need to redistribute points. Third, in order
to capitalize on the ability to solve the integral equations with a high-degree of accuracy,
we use a spectral mesh for the interface. Finally, in order to gain insight into the dynamics
and to provide an analytic tool for understanding stability requirements, we perform a
small-scale decomposition to determine the most dominant term in the evolution of the
interface.

We find solutions to the Stokes equations by extending the integral equation methods
developed in [13, 20] for solid particles to those which can handle the boundary conditions
associated with fluid interfaces. Our starting point is the classical Sherman–Lauricella
equation which has its analytic foundation in the complex variable theory for the biharmonic
equation. The discretization of the integral equation is spectrally accurate and the fast
multipole method [8, 12, 29] is used to compute the matrix–vector products in the iterative
solution of the resulting linear system. WithN points in the discretization of the boundary,
our method requires onlyO(N) operations, versus standard implementations of iterative
schemes [9, 27] which requireO(N2) operations or direct Gaussian elimination [34, 35]
which areO(N3). Given the number of times the Stokes equations must be solved during
the course of a simulation, this significant reduction in operation count becomes imperative
when considering large-scale problems. The consequence of the less efficient algorithms is
clear: thus-far, only modest-sized examples have been considered: Charles and Pozrikidis
study the rheology of suspensions of up to 25 bubbles in [9] and van de Vorst and Mattheij
appear to use a maximum of 17 in their studies of viscous sintering in [35].

It has been observed [34, 35] that the evolution of interfaces in a Stokes flow appears to
become stiff as curvature increases. However, there appears to have been no formal analysis
done to determine the source of this stiffness, and similarily, there does not seem to be a rig-
orous understanding of what are the stability constraints of the motion. We employ the ideas
of Houet al.presented in [18] for removing the stiffness from Hele–Shaw flows and inertial
vortex sheet motion. Here, the authors performed a small-scale decomposition to determine
the dominant term in the evolution of the interface. This analysis has been applied to elastic
filaments in a Stokes flow in [31], but to this author’s knowledge, not to fluid interfaces.
We perform a small-scale decomposition and show that the dominant term is of first order,
leading to a CFL-type stability constraint. By dynamically maintaining a mesh in which the
nodes are distributed at equal arclength intervals, the dominant term appears linearly, and we
can formulate implicit time-stepping algorithms that are explicit in Fourier space. With such
a low-order stability constraint, it is questionable that large, stable step sizes will be of use
when balanced against the need for accuracy, and we investigate this question numerically.
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We see from the analysis of the interfacial dynamics that the motion of an interface in a
Stokes flow is itself not intrinsically stiff, certainly not to the same degree as other examples
of interface motion such as elastic filaments or Hele–Shaw flow. We argue, however, that
the motion of marker points on the interface can become stiff if they are allowed to cluster at
small spatial scales in regions of high curvature, and we demonstrate this point numerically
with one particular mesh-refinement scheme. Since the cost of solving integral equations
for Stokes flow can be high, many authors [27, 34, 35] refine the mesh in regions of high
curvature in order to minimize the number of points needed for adequate resolution. The
resulting stiffness cause Van de Vorst and Mattheij to use backward-difference formulae
to avoid the prohibitively small step sizes needed by explicit time-stepping schemes. We
show both analytically and numerically that this stiffness is avoided by using a method that
maintains marker points at equal intervals in arclength.

In this work, the interface is described using a spectral mesh versus more typical de-
scriptions such as cubic splines or polygonal approximations. These low-order descriptions
limit the spatial accuracy in describing the interface, and when coupled with less efficient
solutions to the integral equations, underresolved features on the interface may result. The
use of spectral methods is not without their difficulties, however. We demonstrate that a
straightforward calculation of the velocity via Fourier collocation leads to spurious growth
of modes near the Nyquist frequency. Similar instabilities described in [18] are believed
to be the result of aliasing errors and they are suppressed by filtering. Baker and Nachbin
carefully analyze these instabilities in the context of vortex sheet motion in the presence of
surface tension in [5]. They show through a linear stability analysis of the discrete equations
that these instabilities arise from the velocity being inadequately resolved and show that a
more careful discretization results in a stable method. We show numerically that by padding
the spectrum in all of the collocation calculations, we appear to get a stable method. A more
thorough stability analysis is needed in order to rigorously investigate the role of different
spatial discretizations in these aliasing-type instabilities. We save this for future work.

We consider only two-dimensional problems here. While many physical effects are lost
in this reduction of dimension, it has been seen that two-dimensional bubbles and drops
retain enough of the qualitative features seen in three dimensions to maintain a high de-
gree of physical relevance. There have been integral equation methods developed to study
three-dimensional bubbles and drops in Stokes flow [23, 36], and clearly the increased
computational complexity makes designing efficient algorithms even more critical. The
complex variable methods presented here do not extend to three dimensions as primitive
variable formulations do; however, the computational tools and general methodology are
available in three dimensions [14, 15].

We begin, in the next section, by outlining the governing equations for fluid interfaces
in a Stokes flow. We focus our attention on two cases, the first in which a closed interface
(a bubble or drop) sits in an infinite expanse of fluid and the second in which the interface
bounds the fluid domain. In Section 3, we briefly review the relevant complex variable
theory for the biharmonic equation which leads to the formulation of the integral equations
in Section 4. In Section 5, we discuss the dynamics of the interface. A small-scale decom-
position of the interface is done to extract off the most dominant term in the motion, thus
giving us the nature of the stability constraints. We show that in the equal arclength frame,
an implicit treatment of the dominant term is easily inverted by the Fourier transform. In
Section 6 we present our numerical methods, and we give several examples in Section 7.
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2. THE GOVERNING EQUATIONS

We consider the motion of a two-dimensional closed fluid interface0 in a slow viscous
flow for two separate problems. In the first case (see Fig. 1a),0 is immersed in an unbounded
fluid domainD. Here,0 represents either the boundary of a bubble (inner viscosity is zero)
or a drop. In the second case (Fig. 1b), the fluid domain is bounded by0. This latter problem
can be used as a model for the viscous sintering of glass (c.f. [34, 35]) or the coalescence
of liquid drops (c.f. [10]).

We assume that the Reynolds number is small, thus the equations governing the fluid
motion in D are given by the Stokes equations

µ∇2u = ∇ p, ∇ · u = 0, x ∈ D, (1)

whereu = (u, v, 0) is the velocity,p is pressure, andµ is the fluid viscosity. If0 is the
boundary of a drop, then the Stokes equations must also hold inside0,

λµ∇2ud = ∇ pd, ∇ · ud = 0, (2)

whereλ > 0 and the superscriptd denotes variables inside the drop. The boundary conditions
for an interface between two viscous fluids include continuity of velocity and a jump in
normal stress proportional to the curvature. This latter condition is specified by

−(p− pd)δi j n j + 2µ
(
ei j − λed

i j

)
nj = −σκni . (3)

Here,ei j is the rate-of-strain tensor

ei j = 1

2

(
∂ui

∂xj
+ ∂u j

∂xi

)
,

where the indicesi and j take on the values 1 or 2 corresponding to thex- or y-directions,
respectively,σ is the surface tension, andκ is the local curvature of0. If the fluid on one

FIG. 1. A viscous fluid domainD with interface0: (a) a bubble or drop in an infinite expanse of fluid, (b)
the fluid is bounded by0 with an inviscid exterior. The unit normaln points out ofD andθ is the tangent angle
to 0. The local curvature is given byκ = θs, wheres is arclength increasing in a clockwise direction in case (a)
and counter-clockwise in case (b).
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side of0 is inviscid, then we do not require continuity of velocity, and the stress boundary
condition is obtained from (3) by settingpd andλ to be zero. IfD is unbounded, then extra
conditions are needed at infinity to complete the description of the problem. We have

u→ u∞(x, t)+ Ȧ

2π

x
|x|2 , as|x| → ∞, (4)

whereu∞ is the velocity of the incident flow anḋA is the prescribed rate of change of the
fluid domainD (in most cases, this will be fixed at zero).

We nondimensionalize the above equations by introducing characteristic values for ve-
locity, uc = σ/µ; the length of the region bounded by0, a; pressure,pc = σ/a; and time,
tc = aµ/σ . The dimensionless form of the Stokes equations are

∇2u = ∇ p, ∇ · u = 0

λ∇2ud = ∇ pd, ∇ · ud = 0,

and the stress interface condition becomes

−(p− pd)δi j n j + 2
(
ei j − λed

i j

)
nj = κni . (5)

The motion of the interface is given by the kinematic condition which states that material
points on the interface move with the velocity of the fluid. Thus, the Lagrangian description
is

dx
dt
= u(x), x ∈ 0.

Many approaches to tracking interface motion are based on the time integration of the above
(c.f. [27, 34, 35], for example). However, for long-time simulations where the interface
changes shape significantly, the Lagrangian description may lead to either clustering or
inadequate resolution of marker points. The usual remedy is to postprocess these points
in a heuristic manner to ensure proper grid spacing on the interface. Instead, we use the
observation given in Houet al. [18] that the shape of an interface is determined solely by
its normal velocityU = u · n. Consequently, a tangential componentT can be introduced
without changing the shape of the interface, and we choose thisT to give us desirable
properties in the interface dynamics [18]. The evolution equation of the interface, then, is

dx
dt
= Un+ Ts, x ∈ 0. (6)

We will investigate in detail a choice forT that dynamically maintains equal arclength
spacing of the marker points, and we will see that this accomplishes two things. (It should
be noted that others, for example [36], have added in tangential velocities as a way of
controlling mesh distortion.) First, it prevents prohibitively small time steps needed by
explicit methods when points cluster together. Second, it allows us to define efficient time-
stepping schemes that treat the stiffest term in (6) implicitly. This will be discussed in more
detail in Section 5.
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3. THE BIHARMONIC EQUATION AND COMPLEX VARIABLE THEORY

For flow in two dimensions, the governing equations can be simplified by introducing a
stream functionW(x, y) which satisfies the relationsu = Wy, v = −Wx. In this way, the
Stokes equations are replaced by the biharmonic equation forW,

12W(x) = 0.

There is a complex variable theory for the biharmonic equation that has been exploited by
a number of authors (c.f. [1, 6, 16, 28, 33] for example) for deriving analytical solutions for
interfaces in creeping flows. This complex variable theory also provides the analytical tools
for deriving the integral equations that are the basis for our numerical study. We summarize
the relevant details here.

Following the discussion of Mikhlin and others [24–26], we note that any plane bihar-
monic functionW(x, y) can be expressed by Goursat’s formula as

W(x, y) = Re(z̄φ(z)+ χ(z)),

whereφ andχ are analytic functions of the complex variablez= x + iy, and Re( f ) denotes
the real part of the complex-valued functionf . The functionsφ(z) andψ(z) = χ ′(z) are
known as Goursat functions. All of the physical variables can be expressed in terms of these
Goursat functions and they are listed here (c.f. [22]):

−v + iu = φ(z)+ zφ′(z)+ ψ(z)

p = −4 Im(φ′), pd = −4λ Im(φ′)

e11+ ie12 = −e22+ ie21 = −i (zφ′′ + ψ ′).

These expressions allow us to reduce the boundary-value problems associated with in-
terfaces in a bounded or unbounded Stokes flow to problems in analytic function theory,
namely that of findingφ andψ which satisfy appropriate conditions on the boundary0.
We outline these conditions below.

The derivation of the stress-interface condition in terms of Goursat functions closely
follows that presented in [33] with slight changes in curve orientation and notation. Define
n = n1+ in2, and f = f1+ i f2, where fi = −p δi j n j + 2ei j n j , then

f = 4 Im(φ′)n− 2i (zφ′′ + ψ ′)n̄.

For a pointτ on the boundary0, the outward normal is given byn = −i τs (again, see Fig. 1
for orientation), which gives

f = −2(φ′ − φ′)
∂τ

∂s
+ 2(τφ′′ + ψ ′)

∂τ

∂s

= −2
∂

∂s
(φ − τφ′ − ψ̄).

Substituting the above andκn = −τss into the interface condition (5) we get

∂

∂s

{
lim

z→τ+
(φ − zφ′ − ψ̄)− λ lim

z→τ−
(φ − zφ′ − ψ̄)

}
= −1

2

∂2τ

∂s2
, τ ∈ 0
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whereτ+ is slightly above0 (in a direction opposite ton), and τ− is slightly below.
Integrating the above with respect tos gives

lim
z→τ+

(φ − zφ′ − ψ̄)− λ lim
z→τ−

(φ − zφ′ − ψ̄) = −1

2

∂τ

∂s
, τ ∈ 0. (7)

Here, the constant of integration may be fixed to be zero. If continuity of velocity is required,
then

lim
z→τ+

(φ + zφ′ + ψ̄) = lim
z→τ−

(φ + zφ′ + ψ̄). (8)

If D is unbounded, then the Goursat functions must also capture the appropriate far-field
velocity (4) and contain an undetermined far-field pressure term [6, 33]

φ ∼ − i

4
p∞(t)z+ φ∞(z)+ G(t), ψ ∼ ψ∞(z)− Ḡ(t)− i

Ȧ

2π

1

z
, as|z| → ∞, (9)

wherep∞(t) is determined as part of the solution,G(t) is an arbitrary constant andφ∞(z)
andψ∞(z) are suitably chosen analytic functions so that

φ∞(z)+ zφ′∞(z)+ ψ∞(z) = −i (u∞ + i v∞).

4. THE SHERMAN–LAURICELLA INTEGRAL EQUATION

It is well known that two-dimensional Stokes flow and elasticity in the plane are closely
related. Both can be expressed as biharmonic equations for a scalar potential function, al-
though the boundary conditions may differ. An extensive theory based on complex variables
has been developed for formulating integral equations for the biharmonic equation [19, 24–
26, 32]. In [13], we used the classical Sherman–Lauricella equation as a starting point to
formulate integral equation methods for solving a variety of boundary-value problems for
Stokes flow with solid boundaries as well as isotropic elasticity in the plane. In this sec-
tion, we outline the corresponding integral equations associated with fluid interfaces in a
Stokes flow. (We note here that the Sherman–Lauricella integral equations can be made to
be equivalent to the integral equations used in [9, 27, 34, 35], which are based on primitive
variable formulations. This is discussed in detail in [13].)

We seek formulations forφ(z) andψ(z) that will be used to formulate integral equations
based on satisfing the stress interface condition (7). In addition, the Goursat functions may
be required to satisfy the velocity condition (8) and the far-field conditions (9). In Appendix
A, we discuss the equivalence between the second fundamental problem in plane elasticity
and the problem of a fluid interface bounding a viscous fluid (case b) in Fig. 1). Since
representations for the Goursat functions for the former problem have been well studied,
we use them for the latter, and in Section 4.1, we present the Sherman–Lauricella integral
equation that results. We then present the integral equation for interfaces in unbounded
domains in Section 4.2.

4.1. Interfaces Bounding Fluid Domains

In Appendix A, we show that we can use the representations for the Goursat functions
suggested by Sherman [25, 26] for a fundamental boundary value problem for elasticity in
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the plane. These representations are

φ(z) = 1

2π i

∫
0

ω(ξ, t)

ξ − z
dξ,

(10)

ψ(z) = 1

2π i

∫
0

−ω(ξ, t) dξ + ω(ξ, t) dξ̄

ξ − z
− 1

2π i

∫
0

ξ̄ω(ξ, t)

(ξ − z)2
dξ,

whereω(ξ, t) is an unknown complex density defined on the boundary of the domain0.
If we let z tend to a pointτ on 0 and use the classical formulae for the limiting values of
Cauchy-type integrals, we obtain from (7) (withλ = 0) the Sherman–Lauricella integral
equation:

ω(τ, t)+ 1

2π i

∫
0

ω(ξ, t) d ln
ξ − τ

ξ̄ − τ̄
+ 1

2π i

∫
0

ω(ξ, t) d
ξ − τ

ξ̄ − τ̄
− i

B̄0

τ̄ − z̄∗

= −1

2

∂τ

∂s
. (11)

Note that the left-hand side of the integral equation includes the termB̄0/(τ̄ − z̄∗), where
z∗ is an arbitrarily prescribed point in the fluid domainD and

B0 = 1

2π

∫
0

[
ω(ξ, t)

(ξ − z∗)2
dξ − ω(ξ, t)

(ξ̄ − z̄∗)2
dξ̄

]
.

This term is added to ensure the invertibility of (11). Lettingξ − τ = rei ϑ , a straightforward
calculation shows that

d ln
ξ − τ

ξ̄ − τ̄
= i dϑ, d

ξ − τ

ξ̄ − τ̄
= 2ie2i ϑdϑ.

Thus, (11) can be written in the form

ω(τ, t)+ 1

2π

∫
0

ω(ξ, t) dϑ + 1

π

∫
0

ω(ξ, t)e2i ϑdϑ − i
B̄0

τ̄ − z̄∗
= −1

2

∂τ

∂s
. (12)

Assuming that the contours themselves are smooth, the latter form of the Sherman–
Lauricella equation is clearly a Fredholm equation of the second kind with smooth ker-
nel, and the Fredholm alternative applies. We refer the reader to [25] or [26] for a proof
that (11) is invertible and thatB0 = 0 so long as the boundary data satisfies a compatibility
condition. In the problems considered here, this compatibility condition requires that

Im
∫

0

∂τ

∂s
dτ = 0,

which is clearly the case.
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4.2. Interfaces in Unbounded Domains

When the fluid domainD is unbounded, we must modify the representations forφ and
ψ to capture the far-field behaviour given by (9)

φ(z) = 1

2π i

∫
0

ω(ξ, t)

ξ − z
dξ − i

4
p∞(t)z+ φ∞(z)+ G(t)

ψ(z) = 1

2π i

∫
0

−ω(ξ, t) dξ +ω(ξ, t) dξ̄

ξ − z
− 1

2π i

∫
0

ξ̄ω(ξ, t)

(ξ − z)2
dξ

− i
Ȧ

2π

1

z− zc
+ψ∞(z)− Ḡ(t), (13)

wherezc is an arbitrary point inside the bubble or drop. The far-field pressurep∞(t) is
determined as part of the solution through the expression

p∞(t) = − 2

π
Re
∫

0

ω(ξ, t)

(ξ − zc)2
dξ,

which fixes a reference value for the pressure atzc. Using the formulae for jumps across
the interface of a Cauchy-type integral, we see that the velocity is continuous across the
interface, thus (8) is satisfied automatically. Again, lettingz approach a boundary pointτ ,
we obtain from (7)

ω(τ, t)+ β

2π i

∫
0

ω(ξ, t) d ln
ξ − τ

ξ̄ − τ̄
+ β

2π i

∫
0

ω(ξ, t) d
ξ − τ

ξ̄ − τ̄
+ 2βG(t)− i

β

2
p∞(t)τ

=− γ

2

∂τ

∂s
−β(φ∞(τ )− τφ′∞(τ )−ψ∞(τ )), (14)

whereβ = (1− λ)/(1+ λ), γ = 1/(1+ λ), andG is given by

G(t) = 1

2

∫
0

ω(ξ, t) ds.

It has been noted by other authors [17] that integral equation formulations in primitive
variables can become singular in the limitsλ = 0 andλ = ∞ (the drops become air bubbles
or solid particles, respectively). Deflated integral equations must be formulated in order to
compute solutions whenλ is close to either of these two limits. In the integral equation
formulation (14),λ = 0 is not a singular case. The numerical results in Example 4, Section 7
support this, and again, we refer the reader to [25] or [26] for discussions on invertibility.

Whenλ = 1, i.e., the drop viscosity is the same as the ambient fluid, the solution to (14)
is trivial,

ω = −1

4

∂τ

∂s
, for τ ∈ 0. (15)

This explicit solution to (14) is a significant simplification, it has been noted by others [6, 9,
10], and it will provide a convenient test case for our numerical methods for the evolution
of the drop interface.



488 M. C. A. KROPINSKI

5. DYNAMICS OF THE INTERFACE

In this section we discuss Eq. (6) for the evolution of the interface0. As discussed in
Section 2, the shape of the evolving interface is determined solely by the normal component
of the fluid velocityU on0, whereU = Re{(u+ i v)n̄} and

u+ i v = −i lim
z→τ

(φ + zφ′ + ψ̄), τ ∈ 0

= − 1

2π

∮
0

ω(ξ, t)

{
dξ

ξ − τ
+ dξ̄

ξ̄ − τ̄

}
+ 1

2π

∮
0

ω(ξ, t) d

(
ξ − τ

ξ̄ − τ̄

)
+ u∞ + i v∞.

(16)

In the above,ω(τ, t) is found from the solution to (11) or (14) and
∮

denotes a principal
value integral. (It is understood thatu∞ + i v∞ ≡ 0 for flows in bounded domains.) The role
of the tangential velocityT in (6) is to effect a change in the frame for the parametrization
of 0. In Section 5.1, we derive an expression forT which dynamically maintains equal
arclength spacing of the marker points. This is called the Equal Arclength Frame. For
comparison, we give an expression forT which dynamically clusters marker points in
the vicinity of regions of high curvature (called the Complexity Measuring Frame). In
Section 5.2, we apply a small-scale decomposition ofu+ i v to extract the most dominant
term from the dynamics of the interface. By choosingT according to the equal arclength
frame, this dominant, highest-order term appears linearly and its implicit time integration
can be handled trivially by the Fourier transform.

5.1. Curve Motion

We introduce a parametrization of0 so that the interface is described byτ = x(α, t)+
iy(α, t), whereα ∈ [0, 2π ]. (Note: As shown in Fig. 1, the parametrization traverses0

counter-clockwise if0 boundsD, and clockwise ifD is unbounded.) The outward unit
normal on0 is

n = −i
τα

sα

≡ −iei θ .

Here,s is arclength,sα = |τα|, andθ is the tangent angle to0. We rewrite (6) as

dτ

dt
= −Ui

τα

sα

+ T
τα

sα

≡ −Uiei θ + T ei θ . (17)

Alternatively, we could useθ andsα as the dynamic variables, which is the approach taken
in [18, 31]. In these works, a small-scale decomposition on the equation forθt shows the
highest-order term appearing linearly inθ . As we will see in Section 5.2, a similar analysis
on (17) shows that the stiffest term can be made linear inτ , thus we retain the physical
coordinates as our dynamic variables. It is, however, illustrative to rewrite the evolution in
terms ofθ andsα as it will aid us in deriving an expression forT that will maintain an equal
arclength frame in the parametrization.

The following derivation is similar to that presented in Houet al. [18], and we include it
here for completeness and to incorporate our change in curve orientation. First, differenti-
atingτα = sαei θ with respect tot gives

dτα

dt
= sα t e

i θ + sαθαt ie
i θ .
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The derivative of (17) with respect toα is

dτα

dt
= (Uθα + Tα)ei θ + (θαT −Uα)iei θ .

Equating the right-hand sides of the above two equations gives the evolution forsα andθ :

sα t = Uθα + Tα, θt = 1

sα

(θαT −Uα). (18)

We will see in the following section that requiringsα to be everywhere equal to its mean
will result in the most dominant term appearing linearly in the evolution equation and
will prevent prohibitive stability constraints for explicit time-stepping methods. This equal
arclength frame is enforced by a particular choice ofT . We require

sα(α, t) = 1

2π

∫ 2π

0
sα(α′, t) dα′ = 1

2π
L(t), (19)

whereL(t) is the length of the interface0. By differentiating (19) with respect tot and
using (18),T is found to be

T(α, t) = T(0, t)−
∫ α

0
θα′U dα′ + α

2π

∫ 2π

0
θα′ Udα′. (20)

If sα satisfies (19) initially, the above choice forT maintains this constraint in time.
It is possible to define a tangential velocity that can be used to dynamically refine the mesh

at regions of high curvature. The Complexity Measuring Frame is achieved by ensuring that
sα(α, t)C(κ) is everywhere equal to its mean, whereC(κ) is a strictly positive, smooth,
increasing function of|κ| (C(κ) = 1+ κ2, for example). Thus, we wish to ensure

sα(α, t)C(κ) = 1

2π

∫ 2π

0
sα′C(κ(α′)) dα′

is maintained for all time and the choice ofT that achieves this is

T(α, t) = C|α=0

C
T(0, t)− 1

C

∫ α

0

{
dC

dκ

(
Uα′

sα′

)
α′
+ θα′U

(
κ

dC

dκ
− C

)}
dα′

+ α

2πC

∫ 2π

0

{
dC

dκ

(
Uα′

sα′

)
α′
+ θα′U

(
κ

dC

dκ
− C

)}
dα′. (21)

This frame was mentioned in Appendix 2 of [18] and we use it to explore the implications
on stability of allowing grid points to cluster in regions of high curvature.

5.2. Small-Scale Decomposition

It has been observed [34, 35] that the evolution of interfaces in a Stokes flow appears to
become stiff as curvature increases. As argued in [18], the stability constraints arise from the
influence of high-order terms only at small spatial scales. Below we present an asymptotic
analysis of the fluid velocity to determine the dominant term at small scales. We show that



490 M. C. A. KROPINSKI

if we are in the equal arclength frame, this dominant term appears linearly in the evolution
equation and can be treated implicitly in a straighforward manner.

Recall from the discussion in Section 4.1 that we can rewrite the kernel in the second
principal-value integral in (16),

1

2π

∮
0

ω(ξ, t) d

(
ξ − τ

ξ̄ − τ̄

)
= i

π

∮
0

ω(ϑ, t)e2i ϑ dϑ.

The fluid velocity on0 then becomes

u+ i v = − 1

2π

∮
0

ω(ξ, t)

{
dξ

ξ − τ
+ dξ̄

ξ̄ − τ̄

}
+ i

π

∮
0

ω(ϑ, t)e2i ϑ dϑ + u∞ + i v∞.

The second integral term on the right-hand side of the above equation contains a smooth
kernel and thus is a smoothing operator2 on ω. We use the notationf ∼ g introduced in
[18] to mean that the difference betweenf andg is smoother thanf andg. Thus,

u+ i v ∼ − 1

2π

∮
0

ω(α′, t)

{
ξα′

ξ − τ
+ ξ̄α′

ξ̄ − τ̄

}
dα′. (22)

The Cauchy kernels in (22) can be rewritten as

ξα′

ξ(α′, t)− τ(α, t)
= 1

2
cot

(
α′ − α

2

)
+
[
−1

2
cot

(
α′ − α

2

)
+ ξα′

ξ(α′, t)− τ(α, t)

]
, (23)

where the bracketed term has a removable singularity provided thatτ is a smooth function
of α and the interface does not self intersect. Therefore, (22) can be rewritten as

u+ i v ∼ − 1

2π

∮
0

ω(α′, t) cot

(
α′ − α

2

)
dα′

= H[ω](α, t),

whereH is the Hilbert transform [7], which is diagonalizable by the Fourier transform

H[einx] = −i sgn(n)einx, H[1] = 0.

Sinceω is the solution to a Fredholm integral equation of the second kind with smooth
kernel, we can use the results in Appendix 1 of [18] directly to obtain an explicit expression
for ω at small scales. The dominant term ofω at small scales is given by the highest-order
term on the right-hand side of the integral equations (11) or (14),

ω ∼ −γ

2

τα

sα

.

Denote the small-scale velocity byus + i vs where

us + i vs = −γ

2
H
[
τα

sα

]
.

2E is a smoothing operator onω if its Fourier transform satisfieŝE[ω] = O(e−ρ|k|ω̂), ρ > 0 for large wave
number|k|. Hereρ defines the strip of analyticity given by|Imα| ≤ ρ.
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This, then, is the most dominant term in the velocity on the interface. (We have assumed
in the scaling of the variables, that surface tension is nonzero. In the case of zero surface
tension, the highest-order term on the right-hand side of the integral equation is found from
the ambient flow velocity. The small-scale velocity, then, would be the Hilbert transform of
this term.)

If we have chosenT according to (20), thensα is spatially invariant at fixed time and

us + i vs = −γ

2

1

sα

H [τα] .

By extracting off the dominant behavior at small scales, the evolution equation (17) becomes

dτ

dt
= −γ

2

1

sα(t)
H [τα] − i (U −Us)

τα

sα(t)
+ (T − Ts)

τα

sα(t)
(24)

= −γ

2

1

sα(t)
H [τα] + R(α, t), (25)

whereUs andTs are the normal and tangential components ofus + i vs, respectively, and
R is given by the remaining terms on the right-hand side of (24), not including the first
term. Applying a Fourier transform to (25) gives

dτ̂

dt
(n, t) = −γ

2
|n| τ̂ (n, t)

sα(t)
+ R̂(n, t). (26)

Thus, a time-integration method that treats the dominant term implicitly can be trivially
inverted by the Fourier Transform. We anticipate from (26) that ifτ is represented by a
truncated Fourier series, a stable step size for an explicit method will beO(1/N) where
N/2 is the Nyquist frequency. Thus, the stability criteria is on the same order as a CFL
constraint and we will verify this numerically. From this analysis, we can also speculate
that allowing marker points to cluster, wherebysα becomes very small in some regions, will
have an adverse effect on stability. The stability constraints for the fluid interface problems
in [18, 31] are of a much higher order and being able to efficiently treat the dominant term
implicitly has a clear advantage. In this case, it is questionable whether being able to take
large stable step sizes will balance against the need for accuracy. We will investigate this
question numerically in Section 7.

6. NUMERICAL METHODS

6.1. Spectral Description of the Interface and Time Integration Schemes

We obtain an initial equal arclength distribution of marker points on0 by the meth-
ods outlined in [18]. We assume we are givenN even points on0 in some convenient
parametrization, whereN is large enough to fully resolve the interface (i.e., the Fourier
spectrum has decayed to round-off). The initialization procedure involves solving a se-
quence of nonlinear equations for theN marker points at equal arclength intervals using
Newton’s method and Fourier interpolation. Then,τ is uniformly discretized inα, where
h = 2π/N is the mesh spacing.

We use two different time-discretizations schemes to evolveτ(α, t). The first applies
the explicit midpoint Runge–Kutta method to (17) directly. This explicit, second-order
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method is a standard approach and details can be found in [3]. Alternatively, we use an
implicit-explicit method on (26). A wide variety of implicit-explicit (IMEX) multistep
methods are examined in detail in [2] and from this work, we select the SBDF (semi-
implicit backward differentiation formula) scheme. The SBDF scheme is also second-order
and was selected over other second-order IMEX schemes because it appears, after some
numerical experimentation, to have better stability properties for the problems considered
here. Let1t be the time step size and ˆτ k denote the approximate solution att = k1t . Then
the SBDF scheme applied to (26) gives

1

21t

[
3τ̂ k+1

n − 4τ̂ k
n + τ̂ k−1

n

] = −γ

2
|n| τ̂

k+1
n

sk+1
α

+ 2R̂k
n − R̂k−1

n . (27)

The differential arclength is updated explicitly according to (18) using the second-order
Adams–Bashforth method,

sk+1
α = sk

α +
1t

2
(3Mk − Mk−1)

whereM is given by

M = 1

2π

∫ 2π

0
θαU dα.

Multistep IMEX schemes are a more natural choice for (26) sincesk+1
α must be updated

first. We note here that IMEX Runge–Kutta schemes have been developed [4]. These would
have the advantage of being self-starting and possibly have higher accuracy.

The right-hand side of evolution equations (17) and (26) is calculated spectrally: All
differentiation inα is done using the fast Fourier transform, and a spectrally accurate dis-
cretization of (16) is discussed in the following section. In a straightforward pseudospectral
calculation, we compute the velocity at theN spatial nodes; however, we see growth of
modes near the Nyquist frequency, particularly if the initial profile is significantly deformed.
Similar instabilities described in [18] are believed to be the result of aliasing errors, and they
are suppressed using a high-order Krasny filter. In [5], Baker and Nachbin carefuly analyze
these instabilities in the context of vortex sheet motion in the presence of surface tension.
They show through a linear stability analysis of the discrete equations that these instabili-
ties arise from the velocity being inadequately resolved and show that a spectrally-accurate
“midpoint” discretization of the velocity results in a stable method. The approach we take
is to calculate the velocity at twice the number of nodes in physical space and then truncate
the spectrum to the original size. This, effectively, pads the spectrum in all of the spectral
calculations, and we demonstrate numerically in Section 7 that this appears to give to a
stable method. It is possible that this padding procedure plays an analogous role to the mid-
point discretization in [5]. However, a more thorough stability analysis is needed in order
to investigate the role of different spatial discretizations in these aliasing-type instabilities.
This is future work.

The Fourier spectrum is checked during the course of simulation and if the modes near
the Nyquist frequency rise above round off,N is doubled. If an explicit method is being
used, we select a new stable step size and according to (26) this should be

1tk+1 = 1

2

sk+1
α

sk
α

1tk.
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Similarly, if the evolving shape is becoming less complex,N is halved once sufficient modes
have decayed to round off and a new time step is determined by

1tk+1 = 2
sk+1
α

sk
α

1tk.

6.2. Discretization of the Integral Equation

In order to solve the Sherman–Lauricella equations, we use a Nystr¨om discretization
based on the trapezoidal rule since it achieves super-algebraic convergence for smooth data
on smooth boundaries. For this, we assume that we are givenN ′ points on the contour0,
equispaced with respect to the parameterα. The step length in the discretization is defined
by h = 2π/N ′. Here,N ′ = 2N whereN is the number of marker points on0 and Fourier
interpolation is used to get data at twice the number of nodes. Associated with each such
point, denoted byτ j , is an unknown valueω j . The derivativeτα will be denoted byσ and
the derivative valuesσ j at the discretization points are calculated via FFTs.

Consider now the system (11). After discretization, we have

ω j +
N ′∑

i=1

K1(τ j , τi )ωi +
N ′∑

i=1

K2(τ j , τi )ωi = − σ j

2|σ j | . (28)

The kernelsK1 andK2 are given by

K1(τ j , τi ) = h

2π i

(
σi

τi − τ j
− σi

τi − τ j

)
K2(τ j , τi ) = h

2π i

(
σi

τi − τ j
− σi (τi − τ j )

(τi − τ j )2

)
.

Whenτ j = τi , K1 andK2 should be replaced by the appropriate limits

K1(τ j , τ j ) = h

2π
κ j |σ j |

K2(τ j , τ j ) = h

2π
κ j (σ j )

2/|σ j |,

whereκ j denotes the curvature at the pointτ j , calculated spectrally.

Remark. We have omitted the termB0 in (11) since its absence does not affect the
behavior of the iterative solution procedure we will employ. For a detailed discussion of
this point, see [11].

The discretization of the Sherman–Lauricella equation (14) for bubbles or drops in an
unbounded domain is

ω j + β

N ′∑
i=1

K1(τ j , τi )ωi + β

N ′∑
i=1

K2(τ j , τi )ωi + βh
N ′∑

i=1

ωi |σi |

+ iβ
h

2π
τ j

N ′∑
i=1

Re

(
ωi σi

(τi − zc)2

)
= gj , (29)

where

gj = −γ

2

σ j

|σ j | − β(φ∞(τ j )− τ j φ′∞(τ j )− ψ∞(τ j )).
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In our implementation, the linear equations (28) and (29) are solved iteratively, using the
generalized minimum residual method GMRES [30]. As discussed in detail in [13], the bulk
of the work at each iteration lies in applying the full matrix to a vector, i.e., computing the
product represented by the left-hand side of (28) and (29). This product can be computed
in O(N) time using the adaptive fast multipole method (FMM). The implementation used
here was developed in [13] for problems in Stokes flow with solid boundaries and elasticity
in the plane. For further details, we also refer the reader to the original papers [8, 12, 29].
Since the number of iterations needed to solve a Fredholm equation of the second kind to a
fixed precision is bounded independent of the system sizeN, we can estimate the total cost
by

c(ε) C(ε)N,

wherec(ε) is the number of GMRES iterations needed to reduce the residual error toε and
C(ε) is the constant of proportionality in the FMM.

Once the solutionω j has been computed, we calculate the velocity at the grid points
through discretizing (16),

u j + i v j = − h

π
(ωα) j +

N ′∑
i=1

K ′1(τ j , τi )ωi + i
N ′∑

i=1

K2(τ j , τi )ωn + (u∞ + i v∞) j , (30)

whereK2 is defined previously andK ′1 is

K ′1(τ j , τi ) = − h

2π

(
σi

τi − τ j
+ σi

τi − τ j

)
K ′1(τ j , τ j ) = − h

2π
Re

{
(σα) j

σ j

}
.

This quadrature rule is spectrally accurate and is based on subtracting off the singular-
ity [5]. Again, FMM is used to evaluate (30). We note that in the primitive variable for-
mulation, the integral equation is formulated in terms of the velocity, and thus an extra
evaluation is not required after the integral equation has been solved. The evaluation of
(30) in our formulation is equivalent to one extra GMRES iteration and is not a significant
cost.

7. NUMERICAL RESULTS

The algorithms described above have been implemented in Fortran. Here, we illustrate
their performance on a variety of examples. The convergence tolerance for the GMRES
iteration is set to 10−10 and all timings cited are for a Compaq Alpha ES40.

EXAMPLE 1: NUMERICAL STABILITY . As discussed in Section 6.1, a pseudospectral
calculation of the velocity (30) withN ′ = N leads to spurious growth of the modes near the
Nyquist frequency (see Fig. 2). This spurious behavior does not appear when the spectrum is
padded (the velocity is evaluated first at twice the number of marker points (N ′ = 2N) and
the Fourier series for the right-hand side of (17) or (26) is truncated to the original number
of modes). We save, for future consideration, a more rigorous linear stability analysis of
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FIG. 2. The Fourier transforms log|τ̂n| of the evolution of an elliptical drop (λ = 1) with aspect ratio 1/2 at
times 0:(0.2):1, in a nonpadded simulation.

the discrete system to identify the source of this instability and the role played by different
spatial discretizations of the velocity. By computing the eigenvalues of the Jacobian matrix
corresponding to the right-hand side of (17), we demonstrate numerically that the unpadded
computations appear to be unstable, while the padded ones seem stable.

We consider a deformed elliptical drop and compute numerically the Jacobian matrix at
this initial state. The plots of the eigenvalues are shown in Fig. 3. AsN increases, linear
growth of positive, real eigenvalues can be seen in the unpadded computations. These plots
have been truncated, we do not show the largest negative eigenvalues, but the magnitude of
the eigenvalues increase linearly inN, thus confirming our expectation that a stable time
step size will beO(1/N).

We discussed briefly in Section 5.1 an alternative frame of reference for the parametriza-
tion, the complexity measuring frame. This frame adaptively clusters marker points in
regions of high curvature, the advantage being that fewer modes will be required to fully
resolve the interface. Unfortunately, this has an adverse effect on the stability requirements
as we see again, by computing the eigenvalues of the Jacobian matrix. Figure 4 shows plots
of the full spectrum for the Jacobian matrix. Note that the largest negative eigenvalues are
decreasing at such a rate as to suggest a stable time-step size ofO(1/N2). Note also that
there is a large gap in the magnitude of the eigenvalues with negative real parts, thus this
system is exhibiting stiffness. It may be argued that this stiffness is simply the result of this
particular frame, but we know that a large disparity in the magnitude of the eigenvalues was
also witnessed in [34]. Here, marker points are updated using a Lagrangian approach and
are postprocessed based on equidistributing the curvature of the interface.
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FIG. 3. The instantaneous eigenvalues of the Jacobian matrix of an elliptical drop (λ = 1) with aspect ratio 4/5.

EXAMPLE 2: A RELAXING DROP WITHλ = 1. In this example, we consider the evolution
of a deformed viscous drop toward a circular steady state. Here, the viscosity of the drop is
the same as that of the ambient fluid, thus the solution to the integral equation is trivial. We
use this example to numerically verify that the small-scale decomposition in Section 5.2
accurately describes the nature of the stability constraint on the interface and to compare
the performance of the IMEX scheme versus Runge–Kutta.

We consider elliptical profiles with varying aspect ratios, normalized so that their area
is π . Figure 5 shows the evolution of a drop with initial aspect ratio of 1/12. In Fig. 6,
we show plots of the Fourier transform for both IMEX and Runge–Kutta at two different
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FIG. 4. The instantaneous eigenvalues of the Jacobian matrix of an elliptical drop (λ = 1) with aspect ratio
4/5. Complexity Measuring Frame withC(κ) = 1+ κ2.

time steps. The Runge–Kutta method is unstable at1t = 0.05, while the IMEX scheme is
clearly stable. Computational information from using the Runge–Kutta method is shown
in Table I. Here, Error (A) is the relative error in the cross-sectional area and Error(sα) =
(max|zα| −min |zα|)/ max|zα|). We can see from this table that the stable step size varies
with 1/N, as predicted by the analysis in Section 5.2. For comparison, we show computa-
tional data for the IMEX scheme in Table II for the evolution of the drop with initial aspect
ratio of 1/12. From this table, we can see that we are able to take very large stable step sizes
using the IMEX scheme, but at a significant loss of accuracy.

FIG. 5. The evolution of an elliptical viscous drop (λ = 1) toward a circular steady state;N = 8192 and the
initial aspect ratio is 1/12.
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FIG. 6. The Fourier transforms log|τ̂n| of the evolution of the ellipse with aspect ratio 2/3 at 5 instances in
time, for IMEX and Runge–Kutta at two time steps1t = 0.1 and1t = 0.05.

Since fourth-order IMEX schemes require only an increase in computer memory, not
CPU, we experimented with the fourth-order IMEX scheme discussed in [2] in hopes
of achieving higher accuracy. Unfortunately, this scheme appears to have a stability re-
quirement similar to the Runge–Kutta method and still does not achieve the same level of
accuracy. Thus, we use the Runge–Kutta method for the remaining examples.

EXAMPLE 3: DROPBREAKUP. We now consider the deformation of a drop withλ = 1
placed in an extensional flow,

u∞ = Cx, v∞ = −Cy,

TABLE I

Computational Information for the Evolution of Elliptical Drops toward Steady

State Using Runge–Kutta

Aspect Ratio N 1t t f Error (A) Error (sα)

2/3 256 0.05 4.0 2.8376× 10−8 1.3097× 10−7

1/3 512 0.025 4.75 1.2112× 10−9 2.0251× 10−7

1/6 2048 0.00625 6.275 1.0313× 10−11 7.3435× 10−7

1/12 8192 0.0015625 8.65625 3.7302× 10−12 1.6695× 10−7

Note.1t is the largest stable step size andt f is the approximate time to steady-state.
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TABLE II

IMEX Method for the Evolution of a Drop with

Initial Aspect Ratio of 1/12

1t Error (A) Error (sα)

0.1 1.2249× 10−3 3.5133× 10−1

0.05 3.1073× 10−4 1.2185× 10−1

0.025 7.8291× 10−5 3.7225× 10−2

0.0015625 3.0840× 10−7 1.8312× 10−4

whereC is the dimensionless capillary number defined by

C = γµa

σ
.

In the numerical study [6], Buckmaster and Flaherty computed steady-state drop shapes for
various values ofC. They demonstrated that for values of the parameterÄ = 4πC

√
A less

than 4.1, drops in an extensional flow will deform to a steady-state. They were unable to
compute steady-state solutions beyond this parameter value and argued that this maximum
coincides with the onset of bursting.

An initially circular drop is placed in an extensional flow withC = 0.2 which corresponds
to Ä = 4.4547. The deformation of this drop untilt = 50 is shown in Fig. 7, and the
drop’s shape att = 60 is shown in Fig. 8. The CPU time required for this simulation was

FIG. 7. Deformation of a drop (λ = 1) in an extensional flow withC = 0.2. This plot shows the evolution
from t = 0 to t = 50. Error (A) = 6.545×10−7, Error (sα) = 2.6833×10−5.
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FIG. 8. The profile of a drop att = 60. A close up of the left tip is shown in the plot on the right. Error
(A) = 8.017× 10−6, Error (sα) = 1.404× 10−5. The minimum width of the neck is 0.016.

8884 seconds. Clearly, the drop profile is not tending toward a steady-state, confirming
the prediction in [6]. Further calculations past pinch-off is the subject of future investi-
gation.

EXAMPLE 4: THE INITIAL COALESCENCE OFTWO EQUAL CIRCLES. In this example, we
consider a problem for which there exists both an analytic solution and previous numerical
results. We examine a model for the coalescence of two cylindrical drops of fluid just after
touching. This is an example for which the fluid domain is bounded by0. The evolution of
two coalescing cylinders with initial radius(−R, 0) and(R, 0) is described parametrically
by [16, 35]

x(α′, ν) = (1− ν2)(1− ν)R
√

2 cosα′

(1− 2ν cos 2α′ + ν2)
√

1+ ν2

y(α′, ν) = (1− ν2)(1+ ν)R
√

2 sinα′

(1− 2ν cos 2α′ + ν2)
√

1+ ν2
,

whereν specifies the degree of coalescence. This parameter has a value of 1 at initial contact,
decreases to a value of zero ast →∞ and evolves according to

dν

dt
= −π R√

2
ν
√

1+ ν2K (ν2), (31)

whereK is the complete elliptic integral of the first kind defined by

K (m) =
∫ π/2

0
(1−msin2 φ)−1/2 dφ.

In this example, the line of contact is they-axis and the point on the boundary at the line of
contact is refered to as theneck. The curvatureκ∗ at the neck is given by

κ∗ = − (1− 6ν + ν2)
√

1+ ν2

(1− ν)3R
√

2
.
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FIG. 9. The left plot shows the initial profile, the curvature at the neck has a value of 700. The right plot
shows the early stages of coalescence in the neck regiont = 0:(0.004):0.02.

To compare with previously reported numerical results [34, 35], we start with the profile
shortly after touching, with a curvature value of 700 at the neck. Figure 9 shows both
the initial profile and a blow up of the neck region in the initial stages of coalescence. A
large number of points is needed to spectrally resolve the interface,N = 32768, and the
time step size is1t = 0.0002. Figure 10 shows both the evolution of the neck curvature
and the error in the computed solution. (The exact curvature was found by integrating (31)
using a high-order Runge–Kutta package with the error tolerances set to<10−12.) The CPU
time needed up to the final time of 0.02 was 25 hours.

The method described in [34, 35] uses a polygonal approximation to the interface, re-
finement of the mesh in the contact region, and Gaussian elimination for the solution to the
integral equation (thus anO(N3) method). They find their simulations to be stiff and thus
employ backward-difference formulae (BDF), with the required Jacobian evaluations, for
the implicit treatment of the evolution equations. For this problem, they have appeared to
use only 200 points to describe the interface. The effect of this underresolution is clear; the

FIG. 10. The left plot shows the evolution ofκ∗ and the right plot shows the error in the computed solution
versus the analytical solution.
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error in the computed curvature is nearly 40% during this initial stage. It is interesting to
note that our stable explicit time step size is only five times smaller than that used by the
BDF scheme.

This example provides an indication of the ability of our methods to handle large-scale
problems. Because of the linear scaling of the computational costs of our methods, we
could, in approximately the same CPU time, run a simulation of 128 moderately deformed
bubbles or drops withN = 256 on each for about 10,000 times steps. This would well
surpass the larger simulations seen in previously reported works.

EXAMPLE 5: A CONTRACTING BUBBLE IN A QUIESCENT FLOW. In [33], Tanveer and
Vasconcelos exploit the complex variable theory for the biharmonic equation to derive
analytical solutions for a large class of time-evolving bubbles in a two-dimensional Stokes
flow. We use one of their solutions here for comparison.

We consider a bubble placed in a quiescent flow undergoing a contraction rateA
a = m.

The bubble shape is described initially by

z(α′, 0) = a(0)e−i α′ + bN(0)ei Nα′ , α′ ∈ [0, 2π ], (32)

wherea(0), bN(0) > 0. The bubble is symmetrical with respect to thex-axis and has
(N + 1)-fold symmetry. As argued in [33], the bubble will evolve according to

z(α′, t) = a(t)e−i α′ + bN(t)ei Nα′ ,

where the evolution ofa(t), bN(t) and the bubble areaA(t) are found through

d

dt
(abN) = −(N + 1)abN I0(a, bN),

(33)
A(t) ≡ π

[
a2(t)− Nb2

N(t)
] = A(0)+mt.

Here,

I0(a, bN) = 1

2π

∫ π

0

dα′{
a2+ N2b2

N − 2NabN cos(α′)
}1/2

= 1

π |a|
ρ

ρ + 1
K

[
4ρ

(1+ ρ)2

]
,

whereρ = a/NbN , andK is the complete elliptic integral of the first kind. (Note: The above
corrects an error in [33] for the evaluation ofI0 in terms ofK .) See Fig. 11 for the collapse
of an initial shape with four-fold symmetry and Table III for computational details. Toward
the end of the simulation, the bubble forms near-cusps on the interface, and according to the
analysis in [33], the bubble will continue to collapse in a sequence of geometrically similar
shapes until all of the air has been removed.
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FIG. 11. The evolution of a collapsing four-fold symmetric bubble. The initial shape is given bya(0) = 0.9,
b3(0) = .1, A(0) = 0.78π and the contraction rate ism= −2π . The final, inner, shape att = 0.356 hasA =
0.2136 andκ∗ = 469.

The coefficientsa(t) andbN(t) are found by integrating the initial-value problem (33)
directly, using a high-order Runge–Kutta package with small error tolerances (tol< 10−10).
From this solution, we compute the maximum curvatureκ∗ on the interface from

κ∗(t) = a(t)+ bN(t)N2

(a(t)− bN(t)N)2
.

We compare the accuracy of our methods against this maximum curvature. The results are
shown in Fig. 12.

Finally, we compute the evolution of collapsing drops of varying viscosity ratios un-
dergoing the same contraction rate as the above example. We attempted to simulate to the
same final timet = 0.356, although some drops exhibit cusp-formation before that time

TABLE III

Computational Data for the Collapsing Bubble Problem

1t0 Error in A Error in |zα | CPUseconds

0.005 1.2495× 10−6 9.1179× 10−6 3.636× 103

0.0025 1.5718× 10−7 2.3802× 10−6 9.023× 103

0.00125 1.9710× 10−8 6.0794× 10−7 1.821× 104

Note. N= 512 on the initial profile and doubles to a value ofN = 8192.
1t0 refers to the initial time step.



TABLE IV

Computational Data for Collapsing Drops of Varying Viscosity Ratio

λ Nf t f κ∗f # GMRES Iter/time step

0.1 2048 0.3560 79.1 6–10
0.5 32768 0.3540 225.84 5–11
5.0 32768 0.2967 552.29 5–14

10.0 32768 0.2873 898.92 6–17

Note.1t0 = 0.005 in all cases, andNf refers toN at the final time step,κ∗f is the
maximum curvature at the final time step.

FIG. 12. The left plot shows the evolution ofκ∗ and the right plot shows the error in the computed solution
versus the analytical solution for three different initial time steps. Note: the kinks in the error plots correspond to
points whenN is doubled.

FIG. 13. Collapsing drops of varying viscosity ratios.
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and the simulation terminates early. The profiles are shown in Fig. 13 and computational
information is shown in Table IV.

8. CONCLUSIONS

In this paper, we present an analysis and new numerical methods for computing the
motion of closed fluid interfaces in a Stokes flow. These methods have three important
advantages. The first is that they are spectrally accurate. A spectral mesh is used for the
description of the interface, and the velocity at the marker points is calculated from the
solution to an integral equation using a pseudospectral method. Second, the solution to the
integral equation is fast, requiring onlyO(N) operations, whereN is the number of marker
points. This makes our methods highly amenable to large-scale simulations. Third, by using
evolution equations that preserve equal arclength spacing of the marker points, a low-order
stability constraint is maintained. Extensions to multiply-connected domains with inviscid
(λ = 0) closed interfaces are considered in [21]. This work discusses the solution to integral
equations similar to the one presented in Appendix A for elasticity problems in multiply-
connected domains. Future work will involve developing methods for simulating a large
numbers of drop interactions, including the breakup and coalescence phenonema.

APPENDIX: THE SECOND FUNDAMENTAL PROBLEM IN ELASTICITY

The representations forφ andψ in Section 4.1 come directly from those given in [13] to
solve the second fundamental problem in elasticity. In this section, we outline this problem
and show its equivalence to the boundary-value problem for a fluid interface bounding a
domain containing a viscous fluid. To demonstrate the potential for the above methods to
be extended to multiply-connected domains, we include the necessary modifications to the
representations for the Goursat functions. (Multiply-connected problems in elasticity in the
plane and two-dimensional Stokes flow are discussed in detail in [13], and we refer the
reader to this work.)

The second fundamental problem in plane elasticity is to find the state of equilibrium of
a bounded elastic material when given external stresses are applied to its boundary0. Here,
we consider0 to be(M + 1)-ply connected, with an outer boundary denoted by00 and the
interior contours by01, 02, . . . , 0M . The boundary conditions for this problem in terms of
the appropriate Goursat functions are [13]

8(τ)+ τ8′(τ )+9(τ) = g1(τ )+ ig2(τ )+ A(k), τ ∈ 0k. (A.1)

The left-hand side of (A.1) represents integrated components of stress, andg1+ ig2 is
boundary data obtained from integrated components of applied forces acting on0k. The
termsA(k) are constants of integration withA(0) being arbitrarily set to zero.

As suggested by Sherman [25, 26] and outlined in [13], the representations for8(z) and
9(z) used to satisfy (A.1) are

8(z) = 1

2π i

∫
0

ρ(ξ)

ξ − z
dξ,

9(z) = 1

2π i

∫
0

ρ(ξ) dξ + ρ(ξ) dξ̄

ξ − z
− 1

2π i

∫
0

ξ̄ρ(ξ)

(ξ − z)2
dξ +

M∑
k=1

bk

z− zk
, (A.2)
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whereρ(ξ) is the unknown complex density,zk are arbitrary points inside the component
curves0k, and thebk are real constants defined by

bk = i
∫

0k

ρ(ξ) dξ̄ − ρ(ξ) dξ.

Letting z tend to a pointτ on 0, we obtain from (A.1) the Sherman–Lauricella integral
equation

ρ(τ)+ 1

2π i

∫
0

ρ(ξ) d ln
ξ − τ

ξ̄ − τ̄
− 1

2π i

∫
0

ρ(ξ) d
ξ − τ

ξ̄ − τ̄
+ B̄0

τ̄ − z∗

+
M∑

k=1

bk

τ̄ − zk
− A(k) = g(τ ), (A.3)

whereg(t) = g1(t)+ ig2(t), A(0) = 0, and

A(k) = −
∫

0k

ρ(ξ) ds.

Here,

B0 = 1

2π i

∫
0

[
ρ(ξ)

(ξ − z∗)2
dτ + ρ(ξ)

(ξ̄ − z∗)2
dξ̄

]
,

andz∗ is an arbitrary point in the domainD. As discussed in [13], the addition of source
singularities inside each of the component curves completes the rank deficiency of the
integral operator in the case of multiply-connected domains.

To establish the equivalence of the stress problem with the interface problem defined
by (7) for λ = 0, identify φ with −i 8, ψ with −i 9, and−ig with −(1/2)τs. Then (7)
clearly can be written in the form (A.1). Thus, we obtain the representations forφ and
ψ in (10) and the integral equation (11) directly from (A.2) and (A.3) withω = −iρ and
M = 0.
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